• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de Dois Radicais Cúbicos

Soma de Dois Radicais Cúbicos

Mensagempor sony01 » Sex Abr 27, 2012 12:10

A expressão x = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} é múltiplo de 4. Essa afirmação é verdadeira ou falsa? Justifique matemáticamente.

Cálculo

Eu sei que: (A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3

x = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}

x^3 = (\sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}})^3

x^3 = 20 + \not 14 \sqrt{2} + 3( \sqrt[3]{20 + 14\sqrt{2}})^2 \cdot (\sqrt[3]{20 - 14\sqrt{2}}) + 3( \sqrt[3]{20 + 14\sqrt{2}}) \cdot (\sqrt[3]{20 - 14\sqrt{2}})^2 + 20 - \not 14 \sqrt{2}

x^3 = 40 + 3( \sqrt[3]{20 + 14\sqrt{2}}) \cdot (\sqrt[3]{20 - 14\sqrt{2}}) \cdot \left[  \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} \right]

x^3 = 40 + 3( \sqrt[3]{400 - 392}) \cdot \left[ \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} \right]

Mas, x = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}, então eu posso substituir:

x^3 = 40 + 3\sqrt[3]{8} \cdot x
x^3 = 40 + 6x
x^3 - 6x - 40 = 0
x^3 - 64 - 6x + 24 = 0
(x - 4) \cdot (x^2 + 4x  + 16) - 6(x - 4) = 0
(x - 4) \cdot (x^2 + 4x + 16 - 6) = 0
(x - 4) \cdot (x^2 + 4x + 10)

Resolvendo (x - 4):

x - 4 = 0
x = 4

Logo, verdadeira!
Pessoal, primeiramente gostaria de saber se existe algum modo "mais fácil" de se chegar a este resultaldo, também gostaria de saber o nível dessa questão de 1 a 10 tendo como base um aluno do 9º ano.

Desde já Agradeço! :)
"Quem estuda sabe mais" - Filosofia de vida!
sony01
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 16:28
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Inglês
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?