• Anúncio Global
    Respostas
    Exibições
    Última mensagem

N consegui resolver a potenciacao!

N consegui resolver a potenciacao!

Mensagempor bmachado » Seg Abr 23, 2012 23:27

(Mackenzie 96) Se ({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{x-1}.{k}^{y}.5^{t+1})^{-1}=150
, então k vale:
a) 1
b) 2
c) 3
d) 4
e) 5

Obs; estudo sozinho e n sei nem por onde começar!Obrigado pela colaboração!
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: N consegui resolver a potenciacao!

Mensagempor Russman » Ter Abr 24, 2012 02:28

Quando se multiplicam potencias de mesma base o resultado é a base elevada a soma dos expoentes das potências anteriores, isto é,

{x}^{a}.{x}^{b} = {x}^{a+b}.

E ainda existe a propriedade
{({x}^{a}.{x}^{b})}^{-c} = ({x}^{-ac}.{x}^{-bc})


Assim, seu problema se resume a
({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{x-1}.{k}^{y}.5^{t+1})^{-1} = ({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{-(x-1)}.{k}^{-y}.5^{-(t+1)}) =

={2}^{x-x+1}.{k}^{y+1-y}.{5}^{t+3-t-1}=2.k.{5}^{2} = 150 \Rightarrow k = \frac{150}{50} = 3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: N consegui resolver a potenciacao!

Mensagempor bmachado » Ter Abr 24, 2012 23:23

Russman escreveu:Quando se multiplicam potencias de mesma base o resultado é a base elevada a soma dos expoentes das potências anteriores, isto é,

{x}^{a}.{x}^{b} = {x}^{a+b}.

E ainda existe a propriedade
{({x}^{a}.{x}^{b})}^{-c} = ({x}^{-ac}.{x}^{-bc})


Assim, seu problema se resume a
({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{x-1}.{k}^{y}.5^{t+1})^{-1} = ({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{-(x-1)}.{k}^{-y}.5^{-(t+1)}) =

={2}^{x-x+1}.{k}^{y+1-y}.{5}^{t+3-t-1}=2.k.{5}^{2} = 150 \Rightarrow k = \frac{150}{50} = 3.

S


Obrigado pela ajuda, pois, estudar Sozinho depois De anos é uma luta, valeu!
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: