• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] envolvendo funções trigonométricas

[limite] envolvendo funções trigonométricas

Mensagempor Henrique Bueno » Ter Abr 24, 2012 22:29

na resolução do seguinte limite:

\lim_{v\to1}\frac{1-v^2}{sen(v\pi)}}

eu havia resolvido multiplicando por 1/v em cima e em baixo e encontrado 0/pi como resultado, porém depois me dei conta de que o limite fundamental trigonométrico (lim x->0 sen u / u = 1 ) somente é válido nos casos onde x->0
Então não consigo resolver mais o exercício :s preciso de ajuda, a prova está chegando :/

grato
Editado pela última vez por Henrique Bueno em Ter Abr 24, 2012 22:46, em um total de 1 vez.
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [limite] envolvendo funções trigonométricas

Mensagempor TheoFerraz » Ter Abr 24, 2012 22:37

Henrrique, voce não colocou para onde v está tendendo!
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [limite] envolvendo funções trigonométricas

Mensagempor Henrique Bueno » Ter Abr 24, 2012 22:46

Corrigido, obrigado !
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [limite] envolvendo funções trigonométricas

Mensagempor TheoFerraz » Qua Abr 25, 2012 01:01

imagino que se voce fizer a troca de variáveis:

x \equiv u - 1

você terá que quando u tende a 1 x tende a zero, portanto o limite equivale a:

\lim_{x\rightarrow 0} \frac{ 1 - {(x+1)}^{2}}{sin((x+1) \pi)} = \lim_{x\rightarrow 0} \frac{ - {x}^{2} - 2x  }{sin(\pi x + \pi)}

com isso, e utilizando a propriedade trigonométrica

sin( a + b) = sin(a)cos(b) + sin(b)cos(a)

que no caso fica

sin( \pi x + \pi) = sin(\pi x)cos(\pi ) + sin(\pi )cos(\pi x )

que resulta em :

sin( \pi x + \pi) = sin(\pi x)cos(\pi ) + sin(\pi )cos(\pi x) = sin(\pi x)

e seu limite fica:

\lim_{x\rightarrow 0} \frac{ - {x}^{2} - 2x  }{sin(\pi x )}

Agora tente dessa forma. [=
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [limite] envolvendo funções trigonométricas

Mensagempor TheoFerraz » Qua Abr 25, 2012 01:01

imagino que se voce fizer a troca de variáveis:

x \equiv u - 1

você terá que quando u tende a 1 x tende a zero, portanto o limite equivale a:

\lim_{x\rightarrow 0} \frac{ 1 - {(x+1)}^{2}}{sin((x+1) \pi)} = \lim_{x\rightarrow 0} \frac{ - {x}^{2} - 2x  }{sin(\pi x + \pi)}

com isso, e utilizando a propriedade trigonométrica

sin( a + b) = sin(a)cos(b) + sin(b)cos(a)

que no caso fica

sin( \pi x + \pi) = sin(\pi x)cos(\pi ) + sin(\pi )cos(\pi x )

que resulta em :

sin( \pi x + \pi) = sin(\pi x)cos(\pi ) + sin(\pi )cos(\pi x) = sin(\pi x)

e seu limite fica:

\lim_{x\rightarrow 0} \frac{ - {x}^{2} - 2x  }{sin(\pi x )}

Agora tente dessa forma. [=
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [limite] envolvendo funções trigonométricas

Mensagempor Henrique Bueno » Qua Abr 25, 2012 01:29

acho que faltou um sinal negativo no sen(pi.x) em baixo, mas você me ajudou MTO com essa sacada do x=u-1, muito obrigado, agora eu consegui resolver o exercício
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.