por LuizCarlos » Ter Abr 24, 2012 20:04
Olá amigos, professores, boa noite!
Estou tentando resolver uns exercícios de Medidas Estatísticas, mas essa questão, resolvi, porém não tenho certeza se está correta!
Num feriado prolongado desceram para as praias do litoral paulista

carros. Se 10 por cento tinham só o motorista, 20 por cento tinham duas pessoas, 20 por cento tinham três pessoas, 30 por cento tinham quatro pessoas, e 20 por cento tinham cinco pessoas, em média, quantas pessoas havia por carro.
Tentei resolver dessa forma:

-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por DanielFerreira » Ter Abr 24, 2012 20:40
Pelo que entendi seria:


30.000
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por LuizCarlos » Ter Abr 24, 2012 22:35
danjr5 escreveu:Pelo que entendi seria:


30.000
Olá amigo danjr5, boa noite! creio que você não conseguiu entender o que escrevi, pelo fato de não estar aparecendo corretamente o problema no seu computador! a resposta no livro é 3,3 pessoas.
Mas creio que isso deve ser resolvido com uma média ponderada, você fez uma média aritmética!
Não consigo escrever os exercícios legível pelo fato do meu teclado ser em outra língua, uso um notebook que ganhei de presente, mas estarei comprando um teclado, para digitar os exercícios para que apareçam legivelmente.
O problema é o seguinte:
Num feriado prolongado, desceram para as praias do litoral paulista

carros. Se

por cento dos carros tinham apenas o motorista,

por cento tinham

pessoas,

por cento tinham

pessoas,

por cento tinham

pessoas e

por cento tinham cinco pessoas, em média, quantas pessoas havia por carro.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por LuizCarlos » Qua Abr 25, 2012 18:05
Consegui resolver a questão, obrigado pela ajuda!
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida em Questão de (EDO)
por sys_ » Sex Abr 10, 2009 19:06
- 2 Respostas
- 2329 Exibições
- Última mensagem por nakagumahissao

Seg Ago 17, 2015 13:04
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida em questão de P.A.
por mushthielv » Seg Ago 17, 2009 12:18
- 3 Respostas
- 7270 Exibições
- Última mensagem por DanielFerreira

Dom Ago 23, 2009 12:59
Progressões
-
- Dúvida na questão
por GABRIELA » Ter Set 01, 2009 17:17
- 2 Respostas
- 6171 Exibições
- Última mensagem por Molina

Ter Set 01, 2009 23:28
Matrizes e Determinantes
-
- duvida na questão
por GABRIELA » Qua Set 30, 2009 17:06
- 10 Respostas
- 6692 Exibições
- Última mensagem por GABRIELA

Qua Set 30, 2009 22:42
Geometria Analítica
-
- Dúvida em uma questão
por Padoan » Qua Ago 11, 2010 18:53
- 3 Respostas
- 3225 Exibições
- Última mensagem por Padoan

Sex Ago 13, 2010 23:10
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.