• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG e áreas

PG e áreas

Mensagempor LuRodrigues » Dom Abr 22, 2012 20:08

Caros,
Gostaria de contar com auxílio na resolução:
De uma sequência infinita de quadrados onde a medida do lado de cada um, a partir do segundo é sempre a metade da medida do lado do quadrado anterior, sabe-se que o lado do primeiro quadrado mede 8. Calcular a soma das áreas.

Eu fiz o seguinte cálculo:
a1=8
q=1/2
Aplicando na fórmula de PG infinita=> 16
R: S= l x l => 156
Porém, como resposta conta 145/3 - não entendi a origem do "3". Poderiam me ajudar?
Obrigada.
LuRodrigues
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 22, 2012 19:03
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: PG e áreas

Mensagempor LuRodrigues » Dom Abr 22, 2012 20:10

Somente retificando a resposta da área que encontrei: 256
Mas como resposta consta 256/3
LuRodrigues
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 22, 2012 19:03
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: PG e áreas

Mensagempor DanielFerreira » Ter Mai 01, 2012 00:51

LuRodrigues escreveu:Caros,
Gostaria de contar com auxílio na resolução:
De uma sequência infinita de quadrados onde a medida do lado de cada um, a partir do segundo é sempre a metade da medida do lado do quadrado anterior, sabe-se que o lado do primeiro quadrado mede 8. Calcular a soma das áreas.

Eu fiz o seguinte cálculo:
a1=8
q=1/2
Aplicando na fórmula de PG infinita=> 16
R: S= l x l => 156
Porém, como resposta conta 145/3 - não entendi a origem do "3". Poderiam me ajudar?
Obrigada.

O lado do 1º quadrado mede 8, então sua área é 64;
O lado do 2º quadrado mede 4, então sua área é 16;
O lado do 3º quadrado mede 2, então sua área é 4;
(...)

Deixemos os lados de 'lado' e trabalhemos com as áreas:
a_1 = 64

a_2 = 16

q = \frac{1}{4}

S_n = ?

Sabe-se que: S_n = \frac{a_1}{1 - q}

então,

S_n = \frac{64}{1 - \frac{1}{4}}

S_n = \frac{64}{\frac{3}{4}}

S_n = 64.\frac{4}{3}

S_n = \frac{256}{3}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}