por LuRodrigues » Dom Abr 22, 2012 20:08
Caros,
Gostaria de contar com auxílio na resolução:
De uma sequência infinita de quadrados onde a medida do lado de cada um, a partir do segundo é sempre a metade da medida do lado do quadrado anterior, sabe-se que o lado do primeiro quadrado mede 8. Calcular a soma das áreas.
Eu fiz o seguinte cálculo:
a1=8
q=1/2
Aplicando na fórmula de PG infinita=> 16
R: S= l x l => 156
Porém, como resposta conta 145/3 - não entendi a origem do "3". Poderiam me ajudar?
Obrigada.
-
LuRodrigues
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Abr 22, 2012 19:03
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: formado
por LuRodrigues » Dom Abr 22, 2012 20:10
Somente retificando a resposta da área que encontrei: 256
Mas como resposta consta 256/3
-
LuRodrigues
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Abr 22, 2012 19:03
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Andamento: formado
por DanielFerreira » Ter Mai 01, 2012 00:51
LuRodrigues escreveu:Caros,
Gostaria de contar com auxílio na resolução:
De uma sequência infinita de quadrados onde a medida do lado de cada um, a partir do segundo é sempre a metade da medida do lado do quadrado anterior, sabe-se que o lado do primeiro quadrado mede 8. Calcular a soma das áreas.
Eu fiz o seguinte cálculo:
a1=8
q=1/2
Aplicando na fórmula de PG infinita=> 16
R: S= l x l => 156
Porém, como resposta conta 145/3 - não entendi a origem do "3". Poderiam me ajudar?
Obrigada.
O lado do 1º quadrado mede 8, então sua área é 64;
O lado do 2º quadrado mede 4, então sua área é 16;
O lado do 3º quadrado mede 2, então sua área é 4;
(...)
Deixemos os lados de 'lado' e trabalhemos com as áreas:




Sabe-se que:

então,




"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- áreas
por cristina » Sex Abr 16, 2010 10:50
- 1 Respostas
- 1653 Exibições
- Última mensagem por Neperiano

Ter Set 27, 2011 19:56
Geometria Plana
-
- AREAS DE FIGURAS
por JOHNY » Qui Set 02, 2010 18:17
- 1 Respostas
- 1884 Exibições
- Última mensagem por Douglasm

Qui Set 02, 2010 18:48
Geometria Plana
-
- Problemas com áreas
por PikenaPin » Ter Mai 31, 2011 14:54
- 1 Respostas
- 2140 Exibições
- Última mensagem por guermandi

Qua Jun 01, 2011 15:22
Geometria Plana
-
- [QUADRILÁTEROS]ÁREAS
por anabrizola » Seg Ago 05, 2013 22:31
- 0 Respostas
- 1466 Exibições
- Última mensagem por anabrizola

Seg Ago 05, 2013 22:31
Geometria Plana
-
- Integral - áreas
por Danilo » Sáb Nov 09, 2013 18:42
- 1 Respostas
- 1922 Exibições
- Última mensagem por e8group

Sex Nov 15, 2013 11:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.