• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Está correto? - Integral Iterada

Está correto? - Integral Iterada

Mensagempor Cleyson007 » Qua Abr 18, 2012 16:22

Boa tarde a todos!

Dada a integral iterada \int_{0}^{1}\int_{y}^{1}f(x,y)\,dxdy, escreva uma integral iterada equivalente com ordem de integração invertida.

Bom, eu fiz assim: \int_{y}^{1}\int_{0}^{1}f(x,y)\,dydx

Gostaria de saber se está correto.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Está correto? - Integral Iterada

Mensagempor DanielFerreira » Qua Abr 18, 2012 20:59

A meu ver, o correto seria \int_{0}^{1}\int_{0}^{x}f(x,y) dydx
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Está correto? - Integral Iterada

Mensagempor Cleyson007 » Qui Abr 19, 2012 10:05

Bom dia Danjr5!

Por favor, explique o seu raciocínio..

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Está correto? - Integral Iterada

Mensagempor DanielFerreira » Sáb Abr 21, 2012 17:31

Cleyson007 escreveu:Bom dia Danjr5!

Por favor, explique o seu raciocínio..

Aguardo retorno.

IMG_0003.jpg

Cleyson,
pude perceber que tens usado SIMMONS.
Se me permite, sugiro que dê uma "olhada" GUIDORIZZI, Hamilton (vol. 3)

Até logo.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?