• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integrais por frações parciais

integrais por frações parciais

Mensagempor engrangel » Qua Abr 18, 2012 15:46

gostaria de saber se alguem pode me informar uma previa de qual o primeiro passo para se resolver questoes envolvendo integrais por frações parciais. Pois estou dando inicio a esse assunto , mas nao consigo acompanha-lo. segue uma questão e gostaria se alguem soubesse responder , postasse o passo a passo da questao para um melhor entendimento.

questao:
Anexos
Sem título.jpg
Sem título.jpg (6.04 KiB) Exibido 2861 vezes
engrangel
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 18, 2012 15:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: integrais por frações parciais

Mensagempor LuizAquino » Qui Abr 19, 2012 14:53

engrangel escreveu:gostaria de saber se alguem pode me informar uma previa de qual o primeiro passo para se resolver questoes envolvendo integrais por frações parciais. Pois estou dando inicio a esse assunto , mas nao consigo acompanha-lo. segue uma questão e gostaria se alguem soubesse responder , postasse o passo a passo da questao para um melhor entendimento.

figura1.jpg
figura1.jpg (6.04 KiB) Exibido 2851 vezes


Se você deseja estudar esse conteúdo, então eu gostaria de recomendar as videoaulas "29. Cálculo I - Integração por Frações Parciais (Caso I e II)" e "30. Cálculo I - Integração por Frações Parciais (Caso III e IV)". Elas videoaulas estão disponíveis em meu canal no YouTube:

http://www.youtube.com/LCMAquino

Além disso, para estudar a resolução dessa integral você pode usar um programa. Por exemplo, o SAGE, o Mathematica, o Maple, etc.

Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate (2x^2 + 5x + 4)/(x^3 + x^2 + x - 3) dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Espere aparecer o resultado da derivada. Clique então no botão "Show steps" que fica ao lado do resultado.
  5. Pronto! Agora basta estudar o procedimento.

Por fim, para que você possa digitar as notações adequadas aqui no fórum, eu aproveito para indicar o seguinte tópico:
DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: integrais por frações parciais

Mensagempor engrangel » Qui Abr 19, 2012 17:47

cara
obrigado pela dica e pelas informações, me ajudou muito.
engrangel
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Abr 18, 2012 15:07
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)