• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Iterada - Como resolver?

Integral Iterada - Como resolver?

Mensagempor Cleyson007 » Qua Abr 18, 2012 16:44

Boa tarde a todos!

Calcule a integral iterada \int_{0}^{\frac{\pi}{2}}\int_{0}^{cosx}y\,dydx e esboce a região de integração sobe a qual a integral é calculada.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Integral Iterada - Como resolver?

Mensagempor DanielFerreira » Qua Abr 18, 2012 21:26

IMG_0001.jpg

o intervalo de y é: 0 \leq y \leq 1

e o de x?
y = cos x

x = arc cos y

x = cos^{- 1}y

portanto,
0 \leq x \leq arc cos y

Daí,
\int_{0}^{1}\int_{0}^{cos^{- 1}y}dxdy

Se não errei nada é isso.
rsr
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integral Iterada - Como resolver?

Mensagempor Cleyson007 » Qui Abr 19, 2012 11:13

Bom dia Danjr!

Vamos por partes, primeiro gostaria de entender a resolução da integral iterada em questão.

Obs.: Esqueci de postar, mas o gabarito da minha apostila diz que a resposta é \frac{\pi}{8}.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Integral Iterada - Como resolver?

Mensagempor DanielFerreira » Sáb Abr 21, 2012 16:50

Cleyson007 escreveu:Bom dia Danjr!

Vamos por partes, primeiro gostaria de entender a resolução da integral iterada em questão.

Obs.: Esqueci de postar, mas o gabarito da minha apostila diz que a resposta é \frac{\pi}{8}.

Aguardo retorno.

E aí cleyson, beleza?!
Desconsidere a 1ª solução/mensagem, pois entendi errado.
IMG.jpg
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integral Iterada - Como resolver?

Mensagempor DanielFerreira » Sáb Abr 21, 2012 17:00

continuando...
\frac{1}{8}\int_{0}^{\frac{\pi}{2}}(cos \beta + 1) d\beta =


\left[\frac{1}{8}\left(sen\beta + \beta \right) \right]_{0}^{\frac{\pi}{2}} =


\left[\frac{1}{8}\left(sen(2x) + 2x \right) \right]_{0}^{\frac{\pi}{2}} =


G(\frac{\pi}{2}) = \frac{1}{8}\left(sen\pi + \pi \right) ===========> G(\frac{\pi}{2}) = \frac{\pi}{8}

G(0) = \frac{1}{8}\left(sen0 + 0 \right) ==================> G(0) = 0

Daí,
G(\frac{\pi}{2}) - G(0) = \frac{\pi}{8}

Espero ter ajudado!

Até breve.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: