• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor libecker » Seg Abr 16, 2012 18:37

Seja  a  matriz A =
\begin{pmatrix}
  1 & 2  \\ 
  3 & 6 
\end{pmatrix} . Indique uma matriz quadrada B de ordem 2 não nula tal que A . B = \begin{pmatrix}
   0 & 0  \\ 
   0 & 0
\end{pmatrix}
libecker
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 16, 2012 11:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando

Re: Matrizes

Mensagempor LuizAquino » Seg Abr 16, 2012 19:58

libecker escreveu:Seja a matriz A = \begin{pmatrix}
  1 & 2  \\ 
  3 & 6 
\end{pmatrix} . Indique uma matriz quadrada B de ordem 2 não nula tal que A . B = \begin{pmatrix}
   0 & 0  \\ 
   0 & 0
\end{pmatrix}


Suponha que:

B = \begin{pmatrix}
   x & y  \\ 
   z & w
\end{pmatrix}

Temos então que:

\begin{pmatrix}
   1 & 2  \\ 
   3 & 6
\end{pmatrix}
\begin{pmatrix}
   x & y  \\ 
   z & w
\end{pmatrix}
=
\begin{pmatrix}
   0 & 0  \\ 
   0 & 0
\end{pmatrix}

Com isso podemos montar o sistema:

\begin{cases}
x + 2z = 0 \\
y + 2w = 0 \\
3x + 6z = 0 \\
3y + 6w = 0
\end{cases}

Note que esse sistema é equivalente a:

\begin{cases}
x + 2z = 0 \\
y + 2w = 0
\end{cases}

Esse sistema linear possui infinitas soluções (pois temos 2 equações e 4 incógnitas). Basta você determinar uma solução que não seja x = y = z = w = 0.

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.