• Anúncio Global
    Respostas
    Exibições
    Última mensagem

complex prove

complex prove

Mensagempor stuart clark » Dom Abr 15, 2012 13:05

Prove that \tan \left(i.\ln\left(\frac{a-ib}{a+ib}\right)\right) = -\frac{2ab}{a^2-b^2}
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: complex prove

Mensagempor fraol » Sáb Abr 21, 2012 16:28

stuart clark escreveu:Prove that \tan \left(i.\ln\left(\frac{a-ib}{a+ib}\right)\right) = -\frac{2ab}{a^2-b^2}


Let z be a complex number such that:

z = a + bi and z = r(cos \theta + i sin \theta) .

So: a + bi = r(cos \theta + i sin \theta). Then we have:

a = rcos \theta and b = r sin \theta.

Now, with results above, let's do some algebraic manipulation with the expression inside natural log and use the Euler identity e^{i\theta} = cos \theta + i sin \theta:

\frac{a - bi}{a + bi} = \frac{rcos \theta - i r sin \theta}{rcos \theta + i r sin \theta} = \frac{cos \theta - i  sin \theta}{cos \theta + i sin \theta} = \frac{e^{-i\theta}}{e^{i\theta}} = e^{-2i\theta}.

Returning to the original expression and applying the last result we get:

\tan \left(i.\ln\left(\frac{a-ib}{a+ib}\right)\right) = tan \left(i.\ln e^{-2i\theta} \right) = tan \left( -2i^2\theta \right) = tan \left( 2\theta \right) .

From trigonometry, we have:

tan \left( 2\theta \right) = \frac{2 tan \theta}{1 - tan^2 \theta} = \frac{2cos \theta sin \theta}{cos^2 \theta - sin^2 \theta }.

Replacing cos and sin in this last expression:

\frac{2cos \theta sin \theta}{cos^2 \theta - sin^2 \theta }  = \frac{2 \frac{a}{r} . \frac{b}{r} } {\frac{a^2}{r^2} - \frac{b^2}{r^2}} = \frac{2ab}{a^2 - b^2},

that is the desired result (note that this solution doesn't contains the negative sign ).

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: complex prove

Mensagempor stuart clark » Qua Mai 02, 2012 01:07

Thanks fraol
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59