• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral dupla - 6

Integral dupla - 6

Mensagempor DanielFerreira » Sáb Abr 14, 2012 22:54

Inverta a ordem de integração

\int_{1}^{e}\left \lfloor \int_{ln x}^{x}f(x,y)dy \right \rfloor dx
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integral dupla - 6

Mensagempor LuizAquino » Dom Abr 15, 2012 23:45

danjr5 escreveu:Inverta a ordem de integração

\int_{1}^{e}\left \lfloor \int_{ln x}^{x}f(x,y)dy \right \rfloor dx


Entre a integral em y de fato temos a função "maior inteiro" ou foi um erro de digitação e você queria colocar apenas colchetes?

Eu vou assumir que foi apenas um erro de digitação.

Para inverter a ordem de integração, observe as figuras abaixo.

figura1.png
figura1.png (6.91 KiB) Exibido 1609 vezes


figura2.png
figura2.png (5.73 KiB) Exibido 1609 vezes


Note que quando 0 \leq y \leq 1 , temos que 1\leq x \leq e^y . Além disso, quando 1 \leq y \leq e , temos que y \leq x \leq e .

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.