por Anderson Alves » Dom Abr 08, 2012 21:10
Olá Galera.
Estou com dúvidas nestes dois exercícios.
1) O termo geral de uma Progressão Aritmética é an= 0,3 - 0,05n. Qual a razão desta progressão?
Resp.: -0,05
2) O termo geral de uma Progressão Aritmética com um número ímpar de termos é 2n + 1. Qual o termo médio desta progressão?
Res.: n + 2.
Em nenhum destes eu consegui desenvolver as questões
Ficarei grato pela ajuda..
-
Anderson Alves
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Sex Fev 24, 2012 22:39
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Informática
- Andamento: formado
por MarceloFantini » Seg Abr 09, 2012 03:44
No primeiro item, perceba que o termo geral é da forma

, onde

é a razão. Daí conclua a resposta.
No segundo, acho estranho. Esse

que aparece na resposta seria o número de termos da progressão?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Anderson Alves » Qui Abr 12, 2012 22:41
Certo. Mas como devo concretizar a questão 1?
E a questão 2, pois é, eu tenho como resposta n + 2, podendo ser o número de termos.
O problema é que eu não consegui desenvolver essas questões.
Valeu pela ajuda....
-
Anderson Alves
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Sex Fev 24, 2012 22:39
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Informática
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Progressões aritméticas
por Alessandrasouza » Sex Mai 14, 2010 15:44
- 3 Respostas
- 1940 Exibições
- Última mensagem por Cleyson007

Sáb Mai 15, 2010 10:41
Progressões
-
- Progressões Aritméticas
por Anderson Alves » Sáb Abr 07, 2012 01:13
- 2 Respostas
- 1196 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 07, 2012 01:31
Progressões
-
- Progressões Aritméticas
por Anderson Alves » Sáb Abr 14, 2012 13:42
- 1 Respostas
- 1568 Exibições
- Última mensagem por Lucio Carvalho

Sáb Abr 14, 2012 16:46
Progressões
-
- Progressões Aritméticas
por MarinaM » Dom Abr 15, 2012 00:24
- 2 Respostas
- 1685 Exibições
- Última mensagem por DanielFerreira

Dom Abr 15, 2012 19:56
Progressões
-
- Progressões Aritméticas
por Anderson Alves » Ter Abr 17, 2012 22:30
- 3 Respostas
- 1862 Exibições
- Última mensagem por Russman

Qui Jun 21, 2012 21:46
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.