• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[FUNÇÃO PAR E ÍMPAR] Mostrar uma verdade absoluta

[FUNÇÃO PAR E ÍMPAR] Mostrar uma verdade absoluta

Mensagempor samifel » Qui Abr 12, 2012 17:07

Boa Tarde,
Minha lista de Cálculo 1 contém o seguinte exercício

Mostre que para toda função f : R\rightarrowR existem uma função par g e uma função ímpar h tais que f(x) = g(x) + h(x).

Tive e continuo tendo dificuldades e monstrar verdades absolutas na matemática a exemplo desta.
Tentei igualar as funções pela definição:
g(x) = g(-x)
h(x) = - h(-x)
Ainda assim, não consegui provar o proposto pelo enunciado.

Obrigada pela atenção,
Samara
samifel
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 12, 2012 16:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [FUNÇÃO PAR E ÍMPAR] Mostrar uma verdade absoluta

Mensagempor MarceloFantini » Qui Abr 12, 2012 19:25

Sami, pesquise no fórum antes de criar um novo tópico. Veja viewtopic.php?f=107&t=7376&p=26192 para uma explicação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.