• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Euclidiana Plana] Prove o teorema

[Geometria Euclidiana Plana] Prove o teorema

Mensagempor stanley tiago » Qua Abr 11, 2012 13:00

Bom dia . eu estou no primeiro ano de licenciatura em matemática .
A minha professora de GE pediu para que provássemos um teorema . Esse teorema é do primeiro capítulo de geometria plana , que diz o seguinte :

a) Se P e Q estão em lados opostos de uma reta r , e Q e T estão em lados opostos de r , então P e T estão do mesmo lado de r .

b) Se P e Q estão em lados opostos de uma reta r , e Q e T estão no mesmo lado de r , então P e T estão em lados opostos de r .

Eu tentei fazer da sequinte forma considera a hipótese e negar a tese e chegar numa conclusão por absurdo .
Mas eu acho que isso não é uma proposição simples do tipo (p\Rightarrow q) .
Eu acho que é desse tipo(p     \Lambda q)\Rightarrow s .


a) Se P e Q estão em lados opostos de uma reta r , e Q e T estão em lados opostos de r , então P e T não estão do mesmo lado r .



Só que eu estou perdido , eu não consigo formalizar o meu raciocínio. E por isso pesso a ajuda de voçês !
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Euclidiana Plana] Prove o teorema

Mensagempor Guill » Sáb Abr 14, 2012 19:49

Partiremos da seguinte proposição: '' Uma reta divide um plano em duas partes.''


Se um ponto fora da reta não pertence a um dos lados, precisa pertencer ao outro lado do plano. Essa segunda afirmação pode ser demonstrada através de conjuntos:

Seja \alpha um plano qualquer. Traçando uma reta qualquer, dividiremos esse plano em dois semiplanos. Agora, trataremos os planos como conjuntos de pontos, onde cada ponto que forma o plano é um elemento diferente. Os semiplanos A e B e a reta R são conjuntos de pontos, onde:

A\cap B = \phi 

A\cap C = \phi

A\cap R = \phi

A\cap B \cap R = \phi

A \cup B \cup R = \alpha


Seja a um ponto no plano (fora da reta r), onde a não pertence a nenhum dos dois lados. Por definição a\in \alpha \rightarrow a\in A \cup B \cup R \rightarrow a\in R. Esse absurdo prova a sentença.



Dessa maneira, se P e Q estão em lados opostos de uma reta, P está do lado x e Q está do lado y. Como Q está do lado oposto a T, pela proposição T está do lado x, o que mostra que P e T estão do mesmo lado.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Geometria Euclidiana Plana] Prove o teorema

Mensagempor stanley tiago » Seg Abr 16, 2012 11:14

valeu obrigado , me ajudou muito .
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: