por nietzsche » Dom Abr 08, 2012 18:57
Não está correto.
"Considerando tgx = u, teremos dx = du.cos²x" : Se u=sex/cos x, então du/dx ? cos²x.
Outra coisa, se você mudou a variável de integração, você precisa trocar todas as variáveis x por alguma função de um, ou seja, x "some" do integrando.
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Guill » Dom Abr 08, 2012 19:00
nietzsche escreveu:Considerando tgx = u, teremos dx = du.cos²x" : Se u=sex/cos x, então du/dx ? cos²x.
Não é mesmo. É por isso que eu acredito que esteja ceto:
Se u=sex/cos x, então du/dx = 1/cos²x
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fraol » Dom Abr 08, 2012 19:04
No meu entendimento a solução de
Guill está correta. O que poderia ser complementado é a resposta em termos de

e

pela diferença dos logaritmos.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por nietzsche » Dom Abr 08, 2012 19:08
Desculpe, está certo essa passagem:
" "Considerando tgx = u, teremos dx = du.cos²x" : Se u=sen x/cos x, então du/dx ? cos²x. "
É isso mesmo, du/dx = 1/ cos²x.
Mas quando vc muda a variável vc não pode fazer isso:

Não pode aparecer o x, pois contaria o teorema da mudança de variáveis.
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por nietzsche » Dom Abr 08, 2012 19:20
Enunciado do teorema a que me refiro:
Let I

be an interval and g : [a,b]

I be a continuously differentiable function. Suppose that f : I

is a continuous function. Then

fonte:
http://en.wikipedia.org/wiki/Integratio ... bstitution
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Está, ou não está certo. Eis a questão!
por Thiago 86 » Dom Set 29, 2013 21:48
- 0 Respostas
- 2752 Exibições
- Última mensagem por Thiago 86

Dom Set 29, 2013 21:48
Funções
-
- CONFERIR SE ESTÁ CERTO
por gabimucedola » Sex Abr 02, 2010 18:11
- 1 Respostas
- 1489 Exibições
- Última mensagem por davi_11

Sáb Abr 03, 2010 13:37
Matemática Financeira
-
- Expressão Está certo ?
por LuizCarlos » Qui Ago 11, 2011 12:41
- 2 Respostas
- 1884 Exibições
- Última mensagem por LuizCarlos

Qui Ago 11, 2011 14:43
Álgebra Elementar
-
- Limites - Está certo?
por iceman » Dom Set 16, 2012 14:57
- 1 Respostas
- 1389 Exibições
- Última mensagem por young_jedi

Dom Set 16, 2012 16:17
Cálculo: Limites, Derivadas e Integrais
-
- simplifiquei e achei...está certo?????????????
por zig » Sex Set 23, 2011 13:57
- 3 Respostas
- 33920 Exibições
- Última mensagem por fraol

Dom Dez 11, 2011 20:24
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.