• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação

Inequação

Mensagempor Well » Dom Abr 08, 2012 18:51

Já tentei e não consegui,uma inequação mais simples com apenas um modulo eu resolvo numa boa,mas esta esta complicada demais

Me ajudem a resolver essa inequação modular

\left|x \right| + \left|2x +1 \right| + 2 > \left|x-2 \right|

obrigado
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Inequação

Mensagempor Guill » Dom Abr 08, 2012 19:27

\left|x \right|+ \left|2x+1 \right|+2> \left|x-2 \right|

\left|x \right|+ \left|2x+1 \right|-\left|x-2 \right| \right|>-2


Se imaginarmos as funções modulares:

f(x) = |x|
g(x) = |2x + 1|
h(x) = |x - 2|


Veremos que o vértice de cada uma delas (já que a função se comporta como duas retas partindo de um vértice) é:

f(x) ---> 0
g(x) ---> \frac{-1}{2}
h(x) ---> 2



Agora, sabemos que a função f(x) é paralela à função h(x). Isso quer dizer que, não importa o quão grande sejam os valores de x, em certos intervalos, f(x) - h(x) terá o mesmo valor. Observe que no intervalo \left[2 ; \infty \right], ela se comportará dessa forma:

f(2) = 2
h(2) = 0

f(2) - h(2) = 2 em todo esse intervalo. Lá, a desigualdade está correta.


As funções também tem esse comportamento em \left[-\infty ; 0\right]:

f(0) = 0
h(0) = 2


f(0) - h(0) = -2 em todo esse intervalo. Lá, a desigualdade está correta, exceto em x = \frac{-1}{2}, já que a função g(x) é nula nele.


No entanto, devemos analizar as funções no intervalo (0 ; 2):

As funções f(x) e g(x) crescem lá, pois seus vértices são antes desse intervalo. Já a função h(x) decresce sempre, o que prova que o seu maior valor nesse intervalo é menor que h(0) = 2. Já os valores de f(0) = 0 e g(0) = 1.
Portanto, o menor valor dessa desigualdade no intervalo dado, seria maior que -1 que é maior que -2. Portanto é certo falar que o conjunto solução disso é:

S = \left({x\in\Re | x \neq\frac{-1}{2} \right)
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}