• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas, Limites

Derivadas, Limites

Mensagempor Grasi » Qui Jun 25, 2009 00:12

Queremos construir uma lata cilíndrica, de volume 900 ml para servir de embalagem para óleo. Quais devem ser as medidas do raio da base e da altura para que a lata seja a mais econômica possível?

Já tentei encontrar a solução em 3 livros q tenho, mas os exemplos e teorias não estão me ajudando.

Peço a gentileza para ajudar-me, agradeço dede já. Muito obrigada!
Grasi
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 24, 2009 23:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Derivadas, Limites

Mensagempor Molina » Qui Jun 25, 2009 11:05

Grasi escreveu:Queremos construir uma lata cilíndrica, de volume 900 ml para servir de embalagem para óleo. Quais devem ser as medidas do raio da base e da altura para que a lata seja a mais econômica possível?

Já tentei encontrar a solução em 3 livros q tenho, mas os exemplos e teorias não estão me ajudando.

Peço a gentileza para ajudar-me, agradeço dede já. Muito obrigada!


Bom dia, Grasi.

Precisamos minimizar a área superficial da lata, que é dada por: A=2 \pi r^2 + 2 \pi r h

O volume é dado por V= \pi r^2 *h. Ou seja, nesse cado V= \pi r^2 *h=900 \Rightarrow h= \frac{900}{ \pi r^2}

Ou seja, substituindo na equação da área, temos: A=2 \pi r^2 + 2 \pi r * \frac{900}{ \pi r^2} \Rightarrow A=2 \pi r^2 + \frac{1800}{r}

Devemos encontrar o mínimo desta função, logo, derivando A:

A'=4 \pi r - \frac{1800}{r^2}=0 \Rightarrow r^3= \frac{1800}{4 \pi} \Rightarrow r=\sqrt[3]{\frac{450}{\pi}}

Fazendo o teste da segunda derivada, temos que A''>0, \forall r>0. Com isso r=\sqrt[3]{\frac{450}{\pi}} é um ponto de mínimo local. Mas o gráfico de A é côncavo para cima e o ponto de mínimo local deve ser também o mínimo absoluto.

Conclusão: O raio ideal da base da lata é r=\sqrt[3]{\frac{450}{\pi}} e a altura ideal dessa lata é h={\frac{900}{\pi * (\sqrt[3]{\frac{450}{\pi}})^2}=2*\sqrt[3]{\frac{450}{\pi}}=2r

Problema grande, porém, se analisar passo a passo verá que não terá grnades problemas.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}