por Priscilla Correa » Sáb Abr 07, 2012 15:44
![\lim_{x \rightarrow 0}\sqrt[n]x - \sqrt[n]p{}{} / x - p \lim_{x \rightarrow 0}\sqrt[n]x - \sqrt[n]p{}{} / x - p](/latexrender/pictures/a7f22620032ff7aceba3a45471e3768d.png)
Alguém pode me ajudar??
-
Priscilla Correa
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Abr 07, 2012 08:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ENGENHARIA
- Andamento: cursando
por LuizAquino » Sáb Abr 07, 2012 16:06
Priscilla Correa escreveu:![\lim_{x \rightarrow 0}\sqrt[n]x - \sqrt[n]p{}{} / x - p \lim_{x \rightarrow 0}\sqrt[n]x - \sqrt[n]p{}{} / x - p](/latexrender/pictures/a7f22620032ff7aceba3a45471e3768d.png)
Alguém pode me ajudar??
O que você escreveu é equivalente a:
![\lim_{x \to 0}\sqrt[n]{x} - \frac{\sqrt[n]{p}}{x} - p \lim_{x \to 0}\sqrt[n]{x} - \frac{\sqrt[n]{p}}{x} - p](/latexrender/pictures/92e91a908a724eb347af1b8da1846918.png)
Mas eu presumo que o exercício original seja:
![\lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p} \lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p}](/latexrender/pictures/7d25615a280b19a531a71b9386e8a584.png)
Se você queria dizer isso, então deveria ter escrito algo como:
![\lim_{x \to p}\left(\sqrt[n]{x} - \sqrt[n]{p}\right)/(x - p) \lim_{x \to p}\left(\sqrt[n]{x} - \sqrt[n]{p}\right)/(x - p)](/latexrender/pictures/cc844929dacec3a3f78b5b548166555e.png)
Note a importância do uso dos parênteses! Além disso, note que x tende a p e não a 0.
Falando agora sobre a resolução desse limite, note que:
![\lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[n]{x} - \sqrt[n]{p}}{\left(\sqrt[n]{x}\right)^n - \left(\sqrt[n]{p}\right)^n} \lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[n]{x} - \sqrt[n]{p}}{\left(\sqrt[n]{x}\right)^n - \left(\sqrt[n]{p}\right)^n}](/latexrender/pictures/b4a589302a6689d509ca436dfb2a3a3e.png)
Agora use o produto notável:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Priscilla Correa » Sáb Abr 07, 2012 16:15
Obrigada pela resposta, eu fiquei meio confusa na hora de escrever a função e acabei digitando errado.
Então, eu resolvi e deu 1/0 (um sobre zero). Será que é isso mesmo???
-
Priscilla Correa
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Abr 07, 2012 08:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ENGENHARIA
- Andamento: cursando
por LuizAquino » Sáb Abr 07, 2012 16:19
Priscilla Correa escreveu:Obrigada pela resposta, eu fiquei meio confusa na hora de escrever a função e acabei digitando errado.
Então, eu resolvi e deu 1/0 (um sobre zero). Será que é isso mesmo???
O resultado não é esse. Envie a sua resolução para que possamos corrigi-la.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Priscilla Correa » Sáb Abr 07, 2012 16:33
Eu refiz e cheguei a outro resultado.
![\lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{}) / (x - p)
= \lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{})(\sqrt[n]x + \sqrt[n]p{}{})/ (x - p)(\sqrt[n]x + \sqrt[n]p{}{})= \lim_{x \rightarrow p} 1/(\sqrt[n]x + \sqrt[n]p{}{}) = 1/(\sqrt[n]p + \sqrt[n]p{}{}) \lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{}) / (x - p)
= \lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{})(\sqrt[n]x + \sqrt[n]p{}{})/ (x - p)(\sqrt[n]x + \sqrt[n]p{}{})= \lim_{x \rightarrow p} 1/(\sqrt[n]x + \sqrt[n]p{}{}) = 1/(\sqrt[n]p + \sqrt[n]p{}{})](/latexrender/pictures/424b363154efd31ac8399945d56983f2.png)
Será que está certo??
-
Priscilla Correa
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Abr 07, 2012 08:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ENGENHARIA
- Andamento: cursando
por LuizAquino » Sáb Abr 07, 2012 16:54
Priscilla Correa escreveu:Eu refiz e cheguei a outro resultado.
![\lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{}) / (x - p)
= \lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{})(\sqrt[n]x + \sqrt[n]p{}{})/ (x - p)(\sqrt[n]x + \sqrt[n]p{}{})= \lim_{x \rightarrow p} 1/(\sqrt[n]x + \sqrt[n]p{}{}) = 1/(\sqrt[n]p + \sqrt[n]p{}{}) \lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{}) / (x - p)
= \lim_{x \rightarrow p}(\sqrt[n]x - \sqrt[n]p{}{})(\sqrt[n]x + \sqrt[n]p{}{})/ (x - p)(\sqrt[n]x + \sqrt[n]p{}{})= \lim_{x \rightarrow p} 1/(\sqrt[n]x + \sqrt[n]p{}{}) = 1/(\sqrt[n]p + \sqrt[n]p{}{})](/latexrender/pictures/424b363154efd31ac8399945d56983f2.png)
Será que está certo??
Está errado. O seu erro está em achar que
![\left(\sqrt[n]{x} - \sqrt[n]{p}\right)\right\left(\sqrt[n]{x} + \sqrt[n]{p}\right) \left(\sqrt[n]{x} - \sqrt[n]{p}\right)\right\left(\sqrt[n]{x} + \sqrt[n]{p}\right)](/latexrender/pictures/9b2492a0192f29c4465c28e77cea554a.png)
é igual a x - p.
Por exemplo, note que:
![\left(\sqrt[3]{x} - \sqrt[3]{p}\right)\right\left(\sqrt[3]{x} + \sqrt[3]{p}\right) = \left(\sqrt[3]{x}\right)^2 - \left(\sqrt[3]{p}\right)^2 \neq x - p \left(\sqrt[3]{x} - \sqrt[3]{p}\right)\right\left(\sqrt[3]{x} + \sqrt[3]{p}\right) = \left(\sqrt[3]{x}\right)^2 - \left(\sqrt[3]{p}\right)^2 \neq x - p](/latexrender/pictures/661d5ced03d4a6f842f7ddeee08aa636.png)
Usando o produto notável que indiquei anteriormente, temos que:
![\lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[n]{x} - \sqrt[n]{p}}{\left(\sqrt[n]{x}\right)^n - \left(\sqrt[n]{p}\right)^n} \lim_{x \to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[n]{x} - \sqrt[n]{p}}{\left(\sqrt[n]{x}\right)^n - \left(\sqrt[n]{p}\right)^n}](/latexrender/pictures/b4a589302a6689d509ca436dfb2a3a3e.png)
![= \lim_{x\to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{(\sqrt[n]{x} - \sqrt[n]{p})(\sqrt[n]{x}^{n-1} + \sqrt[n]{x}^{n-2}\sqrt[n]{p} + \sqrt[n]{x}^{n-3}\sqrt[n]{p}^2+\ldots \sqrt[n]{x}^2\sqrt[n]{p}^{n-3} + \sqrt[n]{x}\sqrt[n]{p}^{n-2} + \sqrt[n]{p}^{n-1})} = \lim_{x\to p}\frac{\sqrt[n]{x} - \sqrt[n]{p}}{(\sqrt[n]{x} - \sqrt[n]{p})(\sqrt[n]{x}^{n-1} + \sqrt[n]{x}^{n-2}\sqrt[n]{p} + \sqrt[n]{x}^{n-3}\sqrt[n]{p}^2+\ldots \sqrt[n]{x}^2\sqrt[n]{p}^{n-3} + \sqrt[n]{x}\sqrt[n]{p}^{n-2} + \sqrt[n]{p}^{n-1})}](/latexrender/pictures/c19e8794a432ec461382d19217519ac7.png)
![= \lim_{x\to p}\frac{1}{\sqrt[n]{x}^{n-1} + \sqrt[n]{x}^{n-2}\sqrt[n]{p} + \sqrt[n]{x}^{n-3}\sqrt[n]{p}^2+\ldots \sqrt[n]{x}^2\sqrt[n]{p}^{n-3} + \sqrt[n]{x}\sqrt[n]{p}^{n-2} + \sqrt[n]{p}^{n-1}} = \lim_{x\to p}\frac{1}{\sqrt[n]{x}^{n-1} + \sqrt[n]{x}^{n-2}\sqrt[n]{p} + \sqrt[n]{x}^{n-3}\sqrt[n]{p}^2+\ldots \sqrt[n]{x}^2\sqrt[n]{p}^{n-3} + \sqrt[n]{x}\sqrt[n]{p}^{n-2} + \sqrt[n]{p}^{n-1}}](/latexrender/pictures/ec764a5d42aa7595b872abd5c8c65756.png)
Agora tente terminar o exercício.
Uma dica: para que você possa entender melhor o que acontece no caso geral, estude o que acontece em um caso particular. Por exemplo, quando n = 3 temos que:
![\lim_{x \to p}\frac{\sqrt[3]{x} - \sqrt[3]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[3]{x} - \sqrt[3]{p}}{\left(\sqrt[3]{x}\right)^3 - \left(\sqrt[3]{p}\right)^3} \lim_{x \to p}\frac{\sqrt[3]{x} - \sqrt[3]{p}}{x - p} = \lim_{x \to p} \frac{\sqrt[3]{x} - \sqrt[3]{p}}{\left(\sqrt[3]{x}\right)^3 - \left(\sqrt[3]{p}\right)^3}](/latexrender/pictures/920673a53c1c1a2ff76565584347eda7.png)
![= \lim_{x\to p}\frac{\sqrt[3]{x} - \sqrt[3]{p}}{\left(\sqrt[3]{x} - \sqrt[3]{p}\right)\left(\sqrt[3]{x}^{2} + \sqrt[3]{x}\sqrt[3]{p} + \sqrt[3]{p}^2\right)} = \lim_{x\to p}\frac{\sqrt[3]{x} - \sqrt[3]{p}}{\left(\sqrt[3]{x} - \sqrt[3]{p}\right)\left(\sqrt[3]{x}^{2} + \sqrt[3]{x}\sqrt[3]{p} + \sqrt[3]{p}^2\right)}](/latexrender/pictures/ab2a22f401583e947560e206556b18bd.png)
![= \lim_{x\to p}\frac{1}{\sqrt[3]{x}^{2} + \sqrt[3]{x}\sqrt[3]{p} + \sqrt[3]{p}^2} = \lim_{x\to p}\frac{1}{\sqrt[3]{x}^{2} + \sqrt[3]{x}\sqrt[3]{p} + \sqrt[3]{p}^2}](/latexrender/pictures/dc482690dafb549a9993a5342708e544.png)
Agora tente continuar.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6478 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4562 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4853 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7040 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4270 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.