• Anúncio Global
    Respostas
    Exibições
    Última mensagem

volume

volume

Mensagempor acalves » Sáb Abr 07, 2012 01:39

Em uma biblioteca escolar, uma pilha de 50 livros tinha 1,8 cm de altura e era formada por livros paradidáticos iguais, de 3 cm de espessura ,e livros didáticos iguais, de 6 cm de espessura.A bibliotecária retirou metade dos livros didáticos da pilha para arrumá-los numa estante e assim a altura da pilha foi.
resposta 30 cm
acalves
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 02, 2012 23:31
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: volume

Mensagempor MarceloFantini » Sáb Abr 07, 2012 18:27

Alves, por favor confira o enunciado, pois este trecho não parece coerente:

[...], uma pilha de 50 livros tinha 1,8 cm de altura [...]


Veja as regras do fórum também, em especial as regras números 1 e 2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: volume

Mensagempor Guill » Dom Abr 08, 2012 15:47

A pilha de livros tem, provavelmente, 1,8 m = 180 cm de altura. Podemos resolver facilmente esse problema usando sistemas de equações, mas, ao invés disso, usaremos a imaginação:

Imagine que você tenha uma pilha de 50 livros. Sabe-se que existem livros paradidático (3 cm de espessura) e livros didáticos (6 cm de espessura). Imagine que essa pilha seja toda de livros paradidáticos. Como cada livro tem 3 cm de espessura, a altura da pilha seria de 150 cm, o que é falso pois faltam 30 cm para o valor verdadeiro.
Agora, troque o livro de cima por um livro didático, de 6cm de espessura. Ao tirar o paradidático, reduzimos em 3cm a altura da pilha. Mas ao colocar o didático, aumentamos em 6 cm, o que nos dá, no fim das contas, uma aumento de 3 cm na pilha de livros. Cada vez que trocarmos um paradidático por um didático, aumentaremos 3 cm. Mas precisamos aumentar 30 cm, o que nos obrica a retirar 10 livros paradidáticos e colocar 10 didáticos:

PILHA = {40 paradidáticos e 10 didáticos}


Se tirarmos metade dos paradidáticos, teremos 30 livros na pilha.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59