por Anderson Alves » Sáb Abr 07, 2012 01:13
Olá Galera. Tenho dúvida nesta questão:
a) Qual o número de 3 algarismos que é divisível por 15 e 9 e não é divisível por 6, e suas cifras formam uma P.A, e que sendo dividido por 6 qual será o resto da divisão.
Ficarei grato pela ajuda.
-
Anderson Alves
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Sex Fev 24, 2012 22:39
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Curso Técnico em Informática
- Andamento: formado
por DanielFerreira » Sáb Abr 07, 2012 01:28
Anderson Alves escreveu:Olá Galera. Tenho dúvida nesta questão:
a) Qual o número de 3 algarismos que é divisível por 15 e 9 e não é divisível por 6, e suas cifras formam uma P.A, e que sendo dividido por 6 qual será o resto da divisão.
Ficarei grato pela ajuda.
Podemos concluir que:
=> não é par;
=> termina com 5;
=> a soma dos algarismos é múltiplo de 9;
=> formam uma P.A.
Seja ABC o número em questão, temos que:
C = 5, pois é multiplo de 5.
AB5
B - A = 5 - B
De
B - A, podemos concluir que B é maior que A; também podemos concluir que 5 é maior que B.
Com isso, sabemos que a P.A é crescente! A única razão que satisfaz o problema é quando esta vale 2.
5 - B = 2
5 - 2 = B
B = 3B - A = 2
3 - A = 2
3 - 2 = A
A = 1ABC = 135
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Sáb Abr 07, 2012 01:31
Esqueci da resposta.
135 = 22 * 6 + 3
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Progressões aritméticas
por Alessandrasouza » Sex Mai 14, 2010 15:44
- 3 Respostas
- 2081 Exibições
- Última mensagem por Cleyson007

Sáb Mai 15, 2010 10:41
Progressões
-
- Progressões Aritméticas
por Anderson Alves » Dom Abr 08, 2012 21:10
- 2 Respostas
- 1634 Exibições
- Última mensagem por Anderson Alves

Qui Abr 12, 2012 22:41
Progressões
-
- Progressões Aritméticas
por Anderson Alves » Sáb Abr 14, 2012 13:42
- 1 Respostas
- 1669 Exibições
- Última mensagem por Lucio Carvalho

Sáb Abr 14, 2012 16:46
Progressões
-
- Progressões Aritméticas
por MarinaM » Dom Abr 15, 2012 00:24
- 2 Respostas
- 1831 Exibições
- Última mensagem por DanielFerreira

Dom Abr 15, 2012 19:56
Progressões
-
- Progressões Aritméticas
por Anderson Alves » Ter Abr 17, 2012 22:30
- 3 Respostas
- 2002 Exibições
- Última mensagem por Russman

Qui Jun 21, 2012 21:46
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.