• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais

Integrais

Mensagempor Guilherme Carvalho » Sex Abr 06, 2012 00:28

Não consegui resolver essas integrais alquém pode me ajudar, por favor...

\int_{} \sqrt[]{{x}^{2}-2x}dx


\int_{} \ x \left( \sqrt[]{1 - {x}^{4}}\right)dx
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Integrais

Mensagempor LuizAquino » Sex Abr 06, 2012 00:39

Guilherme Carvalho escreveu:\int_{} \sqrt[]{{x}^{2}-2x}dx


\int_{} \ x \left( \sqrt[]{1 - {x}^{4}}\right)dx


Guilherme Carvalho escreveu:Não consegui resolver essas integrais alquém pode me ajudar, por favor...


Dicas

Quanto a primeira, note que:

\int \sqrt{x^2 - 2x} \,dx = \int \sqrt{(x - 1)^2 - 1} \,dx

Agora use a substituição trigonométrica \sec \theta = x - 1 .

Quanto a segunda, note que:

\int x \sqrt{1 - x^4} \,dx \int x \sqrt{1 - \left(x^2\right)^2} \,dx

Agora use a substituição trigonométrica \textrm{sen}\,\theta = x^2 .

Tente terminar o exercício aplicando essas dicas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}