• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação!! Por favor ajude

Inequação!! Por favor ajude

Mensagempor Zetsu PN » Seg Abr 02, 2012 23:50

Por favor, seja didático :)

"A solução da inequação \frac{{x}^{2} + 2x - 1}{{x}^{2} -1} \geq \frac{1}{x + 1} é:
Zetsu PN
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 02, 2012 22:06
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Inequação!! Por favor ajude

Mensagempor NMiguel » Ter Abr 03, 2012 07:26

A primeira coisa a fazer para resolver esta inequação é reduzir ambos os membros ao mesmo denominador.

Como x^{2}-1 = (x-1)(x+1), basta transformarmos o denominador do segundo membro.

Assim, temos: \frac{{x}^{2} + 2x - 1}{{x}^{2} -1} \geq \frac{1}{x + 1} \Leftrightarrow  \frac{{x}^{2} + 2x - 1}{{x}^{2} -1} \geq \frac{1}{x + 1} \cdot \frac{x-1}{x - 1}

Calculando o produto no segundo membro, ficamos com: \frac{{x}^{2} + 2x - 1}{{x}^{2} -1} \geq \frac{x-1}{{x}^{2} -1}

Em seguida, devemos passar todos os termos para o primeiro membro: \frac{{x}^{2} + 2x - 1}{{x}^{2} -1}- \frac{x-1}{{x}^{2} -1} \geq 0

E calculamos esta diferença: \frac{{x}^{2} + x }{{x}^{2} -1} \geq 0

Como o numerador e o denominador têm um fator comum, podemos transformar esta inequação da seguinte forma:

\frac{{x}^{2} + x }{{x}^{2} -1} \geq 0  \Leftrightarrow  \frac{x + 1 }{x+1} \cdot \frac{ x }{x-1} \geq 0  \Leftrightarrow \frac{ x }{x-1} \geq 0 \wedge  x\neq -1

Como tanto o numerador como o denominador representam retas crescentes, a fração é positiva antes da raiz do numerador e depois da raiz do denominador. Assim, temos \frac{ x }{x-1} \geq 0 \wedge  x\neq -1 \Leftrightarrow x\in \left ((-\infty ,0] \cup [1,+\infty )  \right )\setminus \left \{ -1 \right \}

Espero ter ajudado. Se não perceber algum dos passos da resolução, tentarei explicar melhor.
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.