• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites trigonométricos (subtração de tangentes)

Limites trigonométricos (subtração de tangentes)

Mensagempor Arthur_Bulcao » Seg Abr 02, 2012 17:27

Mais uma vez, eu com dúvidas.
Sem usar L'Hospital, poderiam me ajudar a resolver:

\lim_{x\rightarrow a}\;\frac{tg(x)-tg(a)}{x-a}

Não tenho a mínima noção de como começar.
Obrigado.
Editado pela última vez por Arthur_Bulcao em Seg Abr 02, 2012 18:04, em um total de 1 vez.
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Limites trigonométricos (subtração de tangentes)

Mensagempor Arthur_Bulcao » Seg Abr 02, 2012 18:04

Saquei!!

Lembrei que
tg(a-b)=\frac{\emph{tg(a)-tg(b)}}{1+tg(a).tg(b)}\;\Rightarrow\\\;\emph{tg(a)-tg(b)}=tg(a-b).[1+tg(a).tg(b)]

e dá pra substituir:
\lim_{x\rightarrow a}\;\frac{\emph{tg(x)-tg(a)}}{x-a} \Rightarrow Substituindo \Rightarrow\,\lim_{x\rightarrow a}\;\frac{\emph{tg(a-b).[1+tg(a).tg(b)]}}{x-a}

Usando uma das propriedades de limites, temos:
\lim_{x\rightarrow a}\;\frac{tg(a-b)}{x-a}\,.\,\lim_{x\rightarrow a}[1+tg(a).tg(b)]

Em suma, o resultado é

\lim_{x\rightarrow a}\;\frac{tg(a-b)}{x-a}\,.\,\lim_{x\rightarrow a}[1+tg(a).tg(b)]\:=\:sec^2a
Arthur_Bulcao
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mar 23, 2012 17:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduação em Engenharia Acústica
Andamento: cursando

Re: Limites trigonométricos (subtração de tangentes)

Mensagempor MarceloFantini » Seg Abr 02, 2012 19:28

Sua resolução está mal escrita. Primeiro, você esqueceu de trocar o b por x, segundo, você não mostrou porque \lim_{x \to a} \frac{tg(a-x)}{x-a} = 1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)