• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prove se a afirmação é verdadeira

Prove se a afirmação é verdadeira

Mensagempor Well » Dom Abr 01, 2012 18:14

Tentei provar por absurdo,porém não conseguir desenvolver a demonstração

A afirmação é esta

Se a é par e não é quadrado perfeito \Rightarrow \sqrt[]{a} é irracional

Obrigado.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Prove se a afirmação é verdadeira

Mensagempor fraol » Dom Abr 01, 2012 23:02

Boa noite,

Vou apresentar uma prova usando um raciocínio parecido com aquele que usamos quando provamos que \sqrt{2} é irracional, vejam se vocês concordam:

Vamos assumir que \sqrt{a} é racional, isto é

\sqrt{a} = \frac{p}{q}

com p e q inteiros positivos, q \ne 0, p e q primos entre si.

Como a é par, seja a = 2k, k um número primo. Então

\sqrt{a} = \frac{p}{q} \iff a = \frac{p^2}{q^2} , q \ne 1 pois a não é quadrado perfeito,

Disso temos p^2 = 2kq^2 então 2 divide p^2 logo 2 divide p.

Assim, seja p = 2s, então

(2s)^2 = 2kq^2 \iff

2s^2 = kq^2

Vemos que 2 divide o primeiro membro da equação, então 2 divide o segundo membro também.
2 não divide k, pois assumimos k sendo um número primo. Então 2 deve dividir q^2 e portanto 2 divide q.

Temos então que 2 é um fator de p e 2 é um fator de q. Dessa forma p e q não são primos entre si, o que contradiz a nossa hipótese.

Logo \sqrt{a} é irracional.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Prove se a afirmação é verdadeira

Mensagempor fraol » Seg Abr 02, 2012 00:04

Pessoal,

Apesar de prosaica, quando redigi a prova, ela me parecia tão válida. Porém, relendo agora há pouco vi que tem uma hipótese que não está boa, aquela que supõe a = 2k, k um número primo.

Pois podemos ter, por exemplo, k = 9 que evidentemente não é primo.

Deveríamos considerar k como sendo um conjunto de fatores primos.

Mesmo assim vou pensar mais um pouco.

Sugestões?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Prove se a afirmação é verdadeira

Mensagempor fraol » Seg Abr 02, 2012 14:42

Pessoal, quebrando a cabeça, olhando aqui e acolá encontrei uma nova forma de mostrar que a afirmação é verdadeira.

O método, como quase sempre, é por contradição.

Vamos supor que \sqrt{a} = \frac{p}{q} sendo que \frac{p}{q} é um número racional na forma de fração irredutível e portanto q é mínimo (o menor valor que satisfaz essa igualdade).

Assim aq^2 = p^2 .

Como a é par então a >= 2, então p > q e q > 1 senão a seria um quadrado perfeito.

Como q > 1 temos q^2 < aq^2.

Por outro lado, p = qx + r , onde r é o resto da divisão euclidiana, 0 <= r < q

Se r = 0 então a é um quadrado perfeito logo 0 < r = p - qx < q.

Se aq^2 = p^2 então

aq^2 -pqx = p^2 - pqx então

q(aq - px) = p(p-qx) então

\frac{aq - px}{p-qx} = \frac{p}{q} = \sqrt{a}.

Como p-qx < q, temos uma contradição à nossa hipótese de que q é mímimo.

Logo \sqrt{a} é irracional.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D