• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Continuidades

Continuidades

Mensagempor Kabection » Qui Mar 29, 2012 22:20

queria uma ajuda para conseguir fatorar esse limite, o unico modo que consigo para resolver, é usando a tabela de valores próximos do x usando calculadora. Alguém sabe fazer de outro modo?

h(x)= {\frac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} se x for diferente de 5, L\ se\ x=5

Usando a tabela calculando valores próximos a resposta dá 1,4142 = \sqrt{2}.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Continuidades

Mensagempor LuizAquino » Sex Mar 30, 2012 02:21

Kabection escreveu:queria uma ajuda para conseguir fatorar esse limite, o unico modo que consigo para resolver, é usando a tabela de valores próximos do x usando calculadora. Alguém sabe fazer de outro modo?

h(x)= {\frac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} se x for diferente de 5, L\ se\ x=5

Usando a tabela calculando valores próximos a resposta dá 1,4142 = \sqrt{2}.


Dica

Multiplique o numerador e o denominador por \left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right) :

\dfrac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} = \dfrac{\left(\sqrt{x} - \sqrt{5}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}{\left(\sqrt{x+5} - \sqrt{10}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Continuidades

Mensagempor Kabection » Sex Mar 30, 2012 22:38

\dfrac{\sqrt{x}-\sqrt{5}}{\sqrt{x+5}-\sqrt{10}} = \dfrac{\left(\sqrt{x} - \sqrt{5}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}{\left(\sqrt{x+5} - \sqrt{10}\right)\left(\sqrt{x} + \sqrt{5}\right)\left(\sqrt{x+5} + \sqrt{10}\right)}

Fica:

\frac{x-5}{x+5-10} * \frac{\sqrt{x+5}+\sqrt{10}}{\sqrt{x}+\sqrt{5}}

Cortando (x-5) com (x+5-10) fica:

\frac{\sqrt{x+5}+\sqrt{10}}{\sqrt{x}+\sqrt{5}}

Substituindo x=5 fica:

\frac{\sqrt{10}+\sqrt{10}}{\sqrt{5}+\sqrt{5}} = \frac{2\sqrt{10}}{2\sqrt{5}}

Cortando 2 e usando a propriedade da divisão das raízes:

\sqrt{10/5} = \sqrt{2}

Valeu Luiz Aquino.
Kabection
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jan 16, 2012 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: