• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] ajuda em lim trigonométrico

[limite] ajuda em lim trigonométrico

Mensagempor Fabio Wanderley » Qui Mar 29, 2012 20:20

Segue:

\lim_{x \to 0}\frac{sen(x^2 + \frac{1}{x}) - sen(\frac{1}{x})}{x}

Peço uma dica... desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limite] ajuda em lim trigonométrico

Mensagempor LuizAquino » Sex Mar 30, 2012 02:52

Fabio Wanderley escreveu:Segue:

\lim_{x \to 0}\frac{sen(x^2 + \frac{1}{x}) - sen(\frac{1}{x})}{x}

Peço uma dica... desde já agradeço!


Comece usando a seguinte identidade:

\textrm{sen}\,(a + b) = \textrm{sen}\,a \cos b + \, \textrm{sen}\,b \cos a
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] ajuda em lim trigonométrico

Mensagempor Fabio Wanderley » Sex Mar 30, 2012 13:01

LuizAquino escreveu:
Fabio Wanderley escreveu:Segue:

\lim_{x \to 0}\frac{sen(x^2 + \frac{1}{x}) - sen(\frac{1}{x})}{x}

Peço uma dica... desde já agradeço!


Comece usando a seguinte identidade:

\textrm{sen}\,(a + b) = \textrm{sen}\,a \cos b + \, \textrm{sen}\,b \cos a


Olá, professor

Eu já havia tentado por essa identidade e ainda assim não vi uma saída:

\lim_{x \to 0}\frac{sen(x^2).cos(\frac{1}{x})+sen(\frac{1}{x}).cos(x^2)-sen(\frac{1}{x})}{x}

Como prosseguir? Ou o que devo mudar?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limite] ajuda em lim trigonométrico

Mensagempor LuizAquino » Sex Mar 30, 2012 15:26

Fabio Wanderley escreveu:Eu já havia tentado por essa identidade e ainda assim não vi uma saída:

\lim_{x \to 0}\frac{sen(x^2).cos(\frac{1}{x})+sen(\frac{1}{x}).cos(x^2)-sen(\frac{1}{x})}{x}

Como prosseguir? Ou o que devo mudar?


Coloque o termo \,\textrm{sen}\,\frac{1}{x} em evidência:

\lim_{x \to 0} \dfrac{\textrm{sen}\, x^2 \cos \frac{1}{x} + \left(\cos x^2 - 1\right)\,\textrm{sen}\, \frac{1}{x} }{x}

Em seguida, separe o limite em dois:

\lim_{x \to 0} \dfrac{\textrm{sen}\, x^2}{x} \cos \frac{1}{x} + \lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x}

Agora tente terminar o exercício.

Observação

Não confundir, por exemplo, \textrm{sen}\,x^2 com \textrm{sen}^2\,x . Nós temos que:

(i) \textrm{sen}\,x^2 = \textrm{sen}\,(x \cdot x)

(ii) \textrm{sen}^2\,x = \left(\textrm{sen}\,x \right)\cdot \left(\textrm{sen}\,x \right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] ajuda em lim trigonométrico

Mensagempor Fabio Wanderley » Sex Mar 30, 2012 17:16

LuizAquino escreveu:
Fabio Wanderley escreveu:Eu já havia tentado por essa identidade e ainda assim não vi uma saída:

\lim_{x \to 0}\frac{sen(x^2).cos(\frac{1}{x})+sen(\frac{1}{x}).cos(x^2)-sen(\frac{1}{x})}{x}

Como prosseguir? Ou o que devo mudar?


Coloque o termo \,\textrm{sen}\,\frac{1}{x} em evidência:

\lim_{x \to 0} \dfrac{\textrm{sen}\, x^2 \cos \frac{1}{x} + \left(\cos x^2 - 1\right)\,\textrm{sen}\, \frac{1}{x} }{x}

Em seguida, separe o limite em dois:

\lim_{x \to 0} \dfrac{\textrm{sen}\, x^2}{x} \cos \frac{1}{x} + \lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x}

Agora tente terminar o exercício.



Ainda não estou conseguindo...

\lim_{x \to 0} \dfrac{\textrm{sen}\, x^2}{x} \cos \frac{1}{x} + \lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x}

\lim_{x \to 0} \frac{x}{x}.\dfrac{\textrm{sen}\, x^2}{x} \cos \frac{1}{x} + \lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x}

\lim_{x \to 0}x.\dfrac{\textrm{sen}\, x^2}{x^2} \cos \frac{1}{x} + \lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x}

Aqui eu notei que o primeiro limite é 0 (conclusão através do Teorema do Confronto). Mas não consegui sair da indeterminação do segundo limite...
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limite] ajuda em lim trigonométrico

Mensagempor LuizAquino » Sex Mar 30, 2012 17:59

Fabio Wanderley escreveu:Ainda não estou conseguindo...

\lim_{x \to 0} \dfrac{\textrm{sen}\, x^2}{x} \cos \frac{1}{x} + \lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x}

\lim_{x \to 0} \frac{x}{x}.\dfrac{\textrm{sen}\, x^2}{x} \cos \frac{1}{x} + \lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x}

\lim_{x \to 0}x.\dfrac{\textrm{sen}\, x^2}{x^2} \cos \frac{1}{x} + \lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x}

Aqui eu notei que o primeiro limite é 0 (conclusão através do Teorema do Confronto). Mas não consegui sair da indeterminação do segundo limite...


Você está correto sobre o primeiro limite.

Quanto ao segundo, você também vai usar o Teorema do Confronto.

Note o seguinte:

\lim_{x \to 0} \dfrac{\cos x^2 - 1}{x}\,\textrm{sen}\, \frac{1}{x} = \lim_{x \to 0} \dfrac{\left(\cos x^2 - 1\right)\left(\cos x^2 + 1\right)}{x\left(\cos x^2 + 1\right)}\,\textrm{sen}\, \frac{1}{x}

= \lim_{x \to 0} \dfrac{\cos^2 x^2 - 1}{x\left(\cos x^2 + 1\right)}\,\textrm{sen}\, \frac{1}{x}

= \lim_{x \to 0} \dfrac{- \,\textrm{sen}^2\, x^2}{x\left(\cos x^2 + 1\right)}\,\textrm{sen}\, \frac{1}{x}

Agora tente terminar o exercício.

Observação

Para qualquer ângulo \alpha , sabemos que:

\,\textrm{sen}^2 \, \alpha  + \cos^2 \alpha = 1

Em particular, para \alpha = x^2 , temos que:

\,\textrm{sen}^2 \, x^2 + \cos^2 x^2 = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] ajuda em lim trigonométrico

Mensagempor Fabio Wanderley » Sex Mar 30, 2012 18:29

Obrigado, professor!

Finalmente terminei. O segundo limite também é 0, logo o resultado é 0.

Eu não sabia sobre a relação informada na sua observação. Foi de grande ajuda tb!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: