por JessyBr » Qui Mar 29, 2012 00:46
Amanha tenho prova de elementos de calculo e não estou conseguindo resolver alguns exercícios da revisão!
Sei calcular a maxima e minima de f(x) e usar os testes de derivada mas o mais simples como obter as raizes da função eu nao consigo!
a questão:
1. Determine os intervalos em que f(x) é crescente e decrescente, os valores de máximo e mínimo relativos de f(x), os intervalos de concavidade, os pontos de inflexão e o gráfico de f(x) utilizando os testes da 1a e da 2a derivada:

Eu queria ajuda para determinar os intervalos de f(x), mas por favor coloquem a evolucao dos calculos pois não sei fazê-los!
Obrigadaa

-
JessyBr
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mar 29, 2012 00:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: arquitetura
- Andamento: cursando
por MarceloFantini » Qui Mar 29, 2012 10:50
Mostre o seu desenvolvimento para que possamos identificar onde você está tendo problemas. Assim, entenderá seus possíveis erros e aprenderá melhor.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Qui Mar 29, 2012 12:41
JessyBr escreveu:Sei calcular a maxima e minima de f(x) e usar os testes de derivada mas o mais simples como obter as raizes da função eu nao consigo!
a questão:
1. Determine os intervalos em que f(x) é crescente e decrescente, os valores de máximo e mínimo relativos de f(x), os intervalos de concavidade, os pontos de inflexão e o gráfico de f(x) utilizando os testes da 1a e da 2a derivada:


Em ambos os casos, você vai precisar determinar as raízes da equação:

.
Para a primeira função do exercício, após derivar você terá que resolver uma equação polinomial do primeiro grau. Já para a segunda função, após derivar você terá que resolver uma equação polinomial do segundo grau.
Para saber como resolver esses tipos de equação, eu recomendo que você assista as videoaulas "Matemática Zero - Aula 13 - Equação do Primeiro Grau" e "Matemática Zero - Aula 14 - Equação do Segundo Grau". Elas estão disponíveis no canal do Nerckie no YouTube:
http://www.youtube.com/nerckieApós assistir essas videoaulas tente resolver o exercício. Caso ainda tenha dúvidas, mostre o seu desenvolvimento assim como já sugeriu o colega
MarceloFantini.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular intervalos de crescimento e decrescimento da função
por Eduardooitavo » Sáb Jun 09, 2012 18:06
- 1 Respostas
- 2438 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 09, 2012 19:32
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Dificuldade para calcular derivadas CDI 1
por srmai » Seg Nov 04, 2013 01:21
- 0 Respostas
- 2166 Exibições
- Última mensagem por srmai

Seg Nov 04, 2013 01:21
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] como calcular
por ma-mine » Sáb Jul 13, 2013 15:24
- 3 Respostas
- 2356 Exibições
- Última mensagem por e8group

Dom Jul 14, 2013 19:00
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] como calcular
por ghiza » Dom Jul 14, 2013 21:45
- 2 Respostas
- 1661 Exibições
- Última mensagem por Man Utd

Dom Jul 14, 2013 23:39
Cálculo: Limites, Derivadas e Integrais
-
- Como calcular derivadas com a constante "e"
por fer_carnie » Seg Jun 20, 2011 20:40
- 1 Respostas
- 1967 Exibições
- Última mensagem por Fabio Cabral

Seg Jun 20, 2011 22:22
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.