• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite envolvendo modulo

limite envolvendo modulo

Mensagempor matmatco » Qui Mar 22, 2012 23:18

não estou conseguindo entender como sair desse modulo\lim_{x\to3 \right|}=\frac{\left|x-3 \right|}{x-3}
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: limite envolvendo modulo

Mensagempor fraol » Qui Mar 22, 2012 23:35

Esse limite não existe.

Observe que o numerador é um número positivo.
Já o denominador é um número positivo se x tende a 3 pela direita
ou é um número negativo se x tende a 3 pela esquerda.

Em outras palavras, os limites laterais são diferentes.

Você saberia dizer qual é o limite quando x tende a 3 pela direita e quando x tende a 3 pela esquerda?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: limite envolvendo modulo

Mensagempor matmatco » Sex Mar 23, 2012 09:21

não
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: limite envolvendo modulo

Mensagempor fraol » Seg Mar 26, 2012 19:45

Observe:

Quando x tende a 3 pela esquerda, x < 3, x - 3 é um número negativo. Então:

\lim_{x\to3^- \right|}=\frac{\left|x-3 \right|}{x-3} = -1

Quando x tende a 3 pela direita, x > 3, x - 3 é um número positivo. Então:

\lim_{x\to3^+ \right|}=\frac{\left|x-3 \right|}{x-3} = 1

É por isso que o limite pedido não existe pois, os limites laterais são diferentes.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: limite envolvendo modulo

Mensagempor matmatco » Ter Mar 27, 2012 10:08

entendi..muito obrigado
abraços
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: limite envolvendo modulo

Mensagempor LuizAquino » Ter Mar 27, 2012 13:01

fraol escreveu:Observe:

Quando x tende a 3 pela esquerda, x < 3, x - 3 é um número negativo. Então:

\lim_{x\to3^- \right|}=\frac{\left|x-3 \right|}{x-3} = -1

Quando x tende a 3 pela direita, x > 3, x - 3 é um número positivo. Então:

\lim_{x\to3^+ \right|}=\frac{\left|x-3 \right|}{x-3} = 1

É por isso que o limite pedido não existe pois, os limites laterais são diferentes.


Apenas uma observação. A notação correta é:

\lim_{x\to3^- \right|} \frac{\left|x-3 \right|}{x-3}

\lim_{x\to3^+ \right|} \frac{\left|x-3 \right|}{x-3}

Note que na sua escrita você colocou um "=" fora do lugar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: limite envolvendo modulo

Mensagempor fraol » Ter Mar 27, 2012 13:06

Ok. Foi um lapso na digitação. Grato.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: limite envolvendo modulo

Mensagempor LuizAquino » Ter Mar 27, 2012 13:14

fraol escreveu:Ok. Foi um lapso na digitação. Grato.


No seu caso eu imaginei isso.

Mas sempre é bom chamar a atenção quanto a escrita matemática.

Existem muitos estudantes que cometem o mesmo equívoco de escrever esse "=" no lugar errado.

Também foi o caso de matmatco:

matmatco escreveu:não estou conseguindo entender como sair desse modulo \lim_{x\to3 \right|}=\frac{\left|x-3 \right|}{x-3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.