• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite Trigonométrico

Limite Trigonométrico

Mensagempor jmoura » Seg Mar 26, 2012 03:34

Como resolvo esse limite?

\lim_{x->0} \frac{sen(x).sen(3x).sen(5x)}{tan(2x).tan(4x).tan(6x)}
jmoura
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 23, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Limite Trigonométrico

Mensagempor LuizAquino » Seg Mar 26, 2012 17:24

jmoura escreveu:Como resolvo esse limite?

\lim_{x->0} \frac{sen(x).sen(3x).sen(5x)}{tan(2x).tan(4x).tan(6x)}


Note que:

\lim_{x\to 0} \dfrac{\,\textrm{sen}\,x \,\textrm{sen}\,3x \,\textrm{sen}\, 5x}{\,\textrm{tg}\,2x \,\textrm{tg}\,4x \,\textrm{tg}\, 6x} = \lim_{x\to 0} \frac{\,\textrm{sen}\,x \,\textrm{sen}\,3x \,\textrm{sen}\, 5x}{\frac{\,\textrm{sen}\,2x}{\cos 2x} \frac{\,\textrm{sen}\,4x}{\cos 4x} \frac{\,\textrm{sen}\,6x}{\cos 6x}}

= \lim_{x\to 0} \dfrac{\cos 2x \cos 4x \cos 6x\,\textrm{sen}\,x \,\textrm{sen}\,3x \,\textrm{sen}\, 5x}{\textrm{sen}\,2x \,\textrm{sen}\,4x \,\textrm{sen}\,6x}

= \lim_{x\to 0} \dfrac{(\cos 2x \cos 4x \cos 6x) (x)(3x)(5x)\dfrac{\,\textrm{sen}\,x \,\textrm{sen}\,3x \,\textrm{sen}\, 5x}{(x)(3x)(5x)}}{(2x)(4x)(6x)\dfrac{\textrm{sen}\,2x \,\textrm{sen}\,4x \,\textrm{sen}\,6x}{(2x)(4x)(6x)}}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite Trigonométrico

Mensagempor Fabio Wanderley » Ter Mar 27, 2012 00:03

A resposta é 5/16?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Limite Trigonométrico

Mensagempor LuizAquino » Ter Mar 27, 2012 12:58

Fabio Wanderley escreveu:A resposta é 5/16?


Sim.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.