• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] o cálculo está correto?

[limite] o cálculo está correto?

Mensagempor Fabio Wanderley » Seg Mar 26, 2012 23:21

Cheguei ao resultado do livro, mas gostaria de confirmar se não há algum erro no desenvolvimento.

\lim_{x \to +\infty}\frac{\sqrt[]{x}+\sqrt[3]{x}}{{x}^{2}+ 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}+x^\frac{1}{3}}{x^2 + 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 + 3x^0}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 . (1 + \frac{3}{x^2})}

\lim_{x \to +\infty}\frac{x^\frac{-3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{(\frac{1}{x})^\frac{3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

(\lim_{x \to +\infty}(\frac{1}{x}))^\frac{3}{2}.\lim_{x \to +\infty}\frac{(1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}} = 0 . 1 = 0
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limite] o cálculo está correto?

Mensagempor LuizAquino » Ter Mar 27, 2012 12:52

Fabio Wanderley escreveu:Cheguei ao resultado do livro, mas gostaria de confirmar se não há algum erro no desenvolvimento.

\lim_{x \to +\infty}\frac{\sqrt[]{x}+\sqrt[3]{x}}{{x}^{2}+ 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}+x^\frac{1}{3}}{x^2 + 3}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 + 3x^0}

\lim_{x \to +\infty}\frac{x^\frac{1}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{x^2 . (1 + \frac{3}{x^2})}

\lim_{x \to +\infty}\frac{x^\frac{-3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{(\frac{1}{x})^\frac{3}{2}. (1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}}

(\lim_{x \to +\infty}(\frac{1}{x}))^\frac{3}{2}.\lim_{x \to +\infty}\frac{(1 + \frac{1}{x^\frac{1}{6}})}{1 + \frac{3}{x^2}} = 0 . 1 = 0


Está correto.

Mas você poderia ser mais "econômico" na sua resolução (isto é, usar menos passos). Bastava dividir o numerador e o denominador por x².

\lim_{x \to +\infty}\frac{\left(\sqrt{x}+\sqrt[3]{x}\right) : x^2}{\left({x}^{2}+ 3\right):x^2} = \lim_{x \to +\infty}\frac{\sqrt{\frac{x}{x^4}}+\sqrt[3]{\frac{x}{x^6}}}{1 + \frac{3}{x^2}}

\lim_{x \to +\infty}\frac{\sqrt{\frac{1}{x^3}}+\sqrt[3]{\frac{1}{x^5}}}{1 + \frac{3}{x^2}} = \frac{\sqrt{0} + \sqrt{0}}{1 + 0} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] o cálculo está correto?

Mensagempor Fabio Wanderley » Ter Mar 27, 2012 14:00

Muito obrigado, professor! Não conhecia esse artifício matemático (operando com raiz).
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}