por Marcelo_ribeiro » Seg Mar 26, 2012 13:57
olá pessoal ... estou com duvida no seguinte exercicio : w= Ln (

, verfique

.
eu consigo fazer a derivada parcial de x e y, mas nao consigo entender como se faz essa parte da verificação . eu tentei derivar em relação a x e y e igualar a 3 . chego até essa parte

. por favor se puderem me orientar agradeço .
-
Marcelo_ribeiro
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Mar 26, 2012 13:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: economia
- Andamento: cursando
por LuizAquino » Seg Mar 26, 2012 15:09
Marcelo_ribeiro escreveu:olá pessoal ... estou com duvida no seguinte exercicio : w= Ln (

, verfique

.
Por favor, verifique o enunciado do exercício. Você tem certeza que digitou o enunciado corretamente?
Marcelo_ribeiro escreveu:eu consigo fazer a derivada parcial de x e y, mas nao consigo entender como se faz essa parte da verificação.
Quando ele diz para verificar se

, ele deseja que você faça o seguinte:
1) calcule a derivada parcial de w em relação a x;
2) calcule a derivada parcial de w em relação a y;
3) some essas duas derivadas parciais;
4) agora responda: o resultado dessa soma é igual a 3?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Marcelo_ribeiro » Seg Mar 26, 2012 15:19
olá , aonde tem erro no enunciado ? eu só nao consegui inserir o Ln na fórmula de imagem. mas de resto acho q esta correto . eu somei as derivadas de x e y . e deu aquele resultado que eu mostrei ali em cima, gostaria de saber o que tenho q fazer posteriormente.
-
Marcelo_ribeiro
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Mar 26, 2012 13:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: economia
- Andamento: cursando
por LuizAquino » Seg Mar 26, 2012 17:09
Marcelo_ribeiro escreveu:olá , aonde tem erro no enunciado?
Eis o que você escreveu (note as partes em destaque):
Marcelo_ribeiro escreveu:w= Ln (

, verfique
Mas eu presumo que o texto original do exercício seja:

, verfique
Marcelo_ribeiro escreveu:eu só nao consegui inserir o Ln na fórmula de imagem.
Use um código como:
- Código: Selecionar todos
[tex]\ln u[/tex]
O resultado desse código é:

Marcelo_ribeiro escreveu:eu somei as derivadas de x e y . e deu aquele resultado que eu mostrei ali em cima, gostaria de saber o que tenho q fazer posteriormente.
Eis o que você escreveu:
Marcelo_ribeiro escreveu:chego até essa parte

Ou seja, você está dizendo que:
Mas o correto seria (considerando a função w que escrevi acima):

Note que no numerador você escreveu 28y² ao invés de 27y².
Pois bem. Considerando essa expressão para a soma das derivadas parciais, não é possível simplificá-la para obter 3. Isso significa que
não é verdade que

. Em outras palavras, a afirmação feita no exercício é falsa.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Marcelo_ribeiro » Ter Mar 27, 2012 02:28
ah entendi, po vlw pela explicação e pela dica de como inserir ln... brigadão msm !
abraçoo
-
Marcelo_ribeiro
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Mar 26, 2012 13:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: economia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada Parcial de 1ª Ordem] - Derivada parcial num ponto
por Vitor2+ » Dom Jul 01, 2012 16:27
- 6 Respostas
- 4564 Exibições
- Última mensagem por e8group

Seg Jul 02, 2012 10:56
Cálculo: Limites, Derivadas e Integrais
-
- derivada parcial
por jmario » Dom Abr 18, 2010 11:41
- 0 Respostas
- 1737 Exibições
- Última mensagem por jmario

Dom Abr 18, 2010 11:41
Cálculo: Limites, Derivadas e Integrais
-
- Derivada Parcial
por Silva339 » Seg Mar 25, 2013 19:06
- 1 Respostas
- 1855 Exibições
- Última mensagem por DanielFerreira

Sex Mar 29, 2013 02:28
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Parcial]
por Russman » Qui Mar 28, 2013 22:04
- 1 Respostas
- 1606 Exibições
- Última mensagem por Russman

Sex Mar 29, 2013 13:00
Cálculo: Limites, Derivadas e Integrais
-
- Derivada parcial
por guilherme5088 » Seg Mar 23, 2020 17:55
- 1 Respostas
- 4248 Exibições
- Última mensagem por guilherme5088

Seg Mar 23, 2020 17:56
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.