• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Solução da Equação

Solução da Equação

Mensagempor Pri Ferreira » Qua Mar 21, 2012 14:46

Sejam x e y números inteiros de forma que o par ordenado
(x,y) represente a solução da equação (x + y).47 = xy.
O valor máximo de x + y é:
(A) 2308
(B) 2306
(C) 2304
(D) 2302

Por favor, ajuda!!Gostaria mt de ver a resolução!!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Solução da Equação

Mensagempor LuizAquino » Qua Mar 21, 2012 21:18

Pri Ferreira escreveu:Sejam x e y números inteiros de forma que o par ordenado
(x,y) represente a solução da equação (x + y).47 = xy.
O valor máximo de x + y é:
(A) 2308
(B) 2306
(C) 2304
(D) 2302


Pri Ferreira escreveu:Por favor, ajuda!! Gostaria mt de ver a resolução!!!


Isolando a variável x, obtemos que:

x = \dfrac{47y}{y-47}

Como x é inteiro, o resultado da fração no segundo membro também deve ser inteiro.

O maior valor inteiro para y que torna o resultado dessa fração um inteiro é igual a 48. Em resumo, temos que y = 48.

Agora basta terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Solução da Equação

Mensagempor Pri Ferreira » Qui Mar 22, 2012 01:18

Muito obrigada, pela ajuda!!Consegui terminar!!!
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}