por Pri Ferreira » Qua Mar 21, 2012 13:44
C o n s i d e r e m - s e o s n ú m e r o s c o m p l e x o s
z = 3.(cos46º+isen46º) e w = 2.(cosâ +isenâ).
O menor valor positivo de â, de modo que (z².w) seja
um número real, é igual a:
(A) 74°
(B) 88°
(C) 112°
(D) 136°
Por favor!! Gostaria de ver a resolução!!
-
Pri Ferreira
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Qua Out 19, 2011 20:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: formado
por LuizAquino » Sáb Mar 31, 2012 15:31
Pri Ferreira escreveu:C o n s i d e r e m - s e o s n ú m e r o s c o m p l e x o s
z = 3.(cos46º+isen46º) e w = 2.(cosâ +isenâ).
O menor valor positivo de â, de modo que (z².w) seja
um número real, é igual a:
(A) 74°
(B) 88°
(C) 112°
(D) 136°
Primeiro, lembre-se que:
![\begin{cases} u = |u|(\cos \alpha + i\,\textrm{sen}\, \alpha) \\ v = |v|(\cos \beta + i\,\textrm{sen}\, \beta)\end{cases} \Rightarrow uv = |u||v|[\cos (\alpha + \beta) + i\,\textrm{sen}\, (\alpha + \beta)] \begin{cases} u = |u|(\cos \alpha + i\,\textrm{sen}\, \alpha) \\ v = |v|(\cos \beta + i\,\textrm{sen}\, \beta)\end{cases} \Rightarrow uv = |u||v|[\cos (\alpha + \beta) + i\,\textrm{sen}\, (\alpha + \beta)]](/latexrender/pictures/77df5f5162a57792f811ee727dedad78.png)
Em seguida, lembre-se que quando um número complexo u é real, a sua parte imaginária é zero.
Agora tente terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão simples - N° Complexos
por iceman » Dom Mai 27, 2012 20:25
- 1 Respostas
- 1753 Exibições
- Última mensagem por DanielFerreira

Dom Mai 27, 2012 20:41
Números Complexos
-
- Questão - números complexos
por Danilo » Sex Ago 03, 2012 02:27
- 1 Respostas
- 2066 Exibições
- Última mensagem por e8group

Sex Ago 03, 2012 11:15
Números Complexos
-
- Questão - Números Complexos
por Glauber_Garcia » Qua Nov 28, 2012 21:25
- 2 Respostas
- 4793 Exibições
- Última mensagem por Direito

Qua Mar 13, 2013 01:15
Números Complexos
-
- [números complexos] questão unicentro
por Flavia R » Qui Ago 25, 2011 11:39
- 4 Respostas
- 3566 Exibições
- Última mensagem por Flavia R

Qui Ago 25, 2011 21:23
Números Complexos
-
- [Números complexos] Dúvida em questão
por iceman » Qui Mai 10, 2012 18:46
- 3 Respostas
- 2762 Exibições
- Última mensagem por fraol

Qui Mai 10, 2012 19:41
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.