• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por partes] Não consigo chegar no resultado.

[Integração por partes] Não consigo chegar no resultado.

Mensagempor renanrdaros » Ter Mar 20, 2012 16:32

Um foguete acelera pela queima do combustível a bordo; assim, sua massa diminui com o tempo. Suponha que a massa inicial do foguete no lançamento (incluindo o combustível) seja m, que o combustível seja consumido a uma taxa r, e que os gases de exaustão sejam ejetados a uma velocidade constante {v}_{e} (relativa ao foguete). Um modelo para a velocidade do foguete a um tempo t é dado pela seguinte equação:

v(t) = -gt - {v}_{e} ln\frac{m - rt}{m}

onde g é a aceleração da gravidade, e t não é muito grande. Se g = 9.8 m/s², m = 30000 kg, r = 160 kg/s e {v}_{e} = 3000 m/s, ache a altitude do foguete 1 minuto após o lançamento.




\int_{}^{} \left(-9.8t - 3000ln\frac{375 - 2t}{375} \right) dt = -4.9{t}^{2} + 1500\left[\left(375 - 2t \right)ln\left(\frac{375 - 2t}{375} \right)-\left(375 - 2t \right) \right] + c

Resolvendo a integral indefinida cheguei no resultado acima, mas ao aplicar os limites de integração o resultado final dá sempre negativo.
Editado pela última vez por renanrdaros em Qua Mar 21, 2012 01:33, em um total de 3 vezes.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor LuizAquino » Ter Mar 20, 2012 20:51

renanrdaros escreveu:Um foguete acelera pela queima do combustível a bordo; assim, sua massa diminui com o tempo. Suponha que a massa inicial do foguete no lançamento (incluindo o combustível) seja m, que o combustível seja consumido a uma taxa r, e que os gases de exaustão sejam ejetados a uma velocidade constante {v}_{e} (relativa ao foguete). Um modelo para a velocidade do foguete a um tempo t é dado pela seguinte equação:

v(t) = -gt - {v}_{e} ln\frac{m - rt}{m}

onde g é a aceleração da gravidade, e t não é muito grande. Se g = 9.8 m/s², m = 30000 kg, r = 160 kg/s e {v}_{e} = 3000 m/s, ache a altitude do foguete 1 minuto após o lançamento.


renanrdaros escreveu:\int_{}^{} \left(-9.8t - 3000ln\frac{30000 - 2t}{30000} \right) dt = -4.9{t}^{2} + 1500\left[\left(375 - 2t \right)ln\left(\frac{375 - 2t}{375} \right)-\left(375 - 2t \right) \right] + c

Resolvendo a integral indefinida cheguei no resultado acima, mas ao aplicar os limites de integração o resultado final dá sempre negativo.


1) Note que r = 160 kg/s, mas você substituiu por 2. Reveja os cálculos da integral indefinida.

2) Qual é o intervalo de integração que você está aplicando? Você está tomando o cuidado de colocar o intervalo de integração em segundos?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor renanrdaros » Qua Mar 21, 2012 01:43

LuizAquino escreveu:1) Note que r = 160 kg/s, mas você substituiu por 2. Reveja os cálculos da integral indefinida.

2) Qual é o intervalo de integração que você está aplicando? Você está tomando o cuidado de colocar o intervalo de integração em segundos?



1 - Já editei. Os cálculos estavam certos; eu errei ao digitar aqui no fórum. Na verdade eu fatorei e simplifiquei o logaritmando.

2 - Estou usando o intervalo [0; 60s].
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor nietzsche » Qua Mar 21, 2012 02:05

Analisando a integral, não precisa usar integração por partes. Uma mudança de váriavel é suficiente. Lembrando que essa integral pode ser separada na soma de duas e "chamando" o argumento do logaritmo de uma nova variável u(t), vai facilitar.
Um site pra testar se suas contas estão certas é:
http://www.wolframalpha.com/
Ele calcula integrais.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor renanrdaros » Qua Mar 21, 2012 09:17

nietzsche,

Eu já havia comparado o meu resultado com o resultado obtido pelo wolfram alpha. A integração está correta, o problema é que, ao aplicar os limites, não chego ao resultado esperado.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor LuizAquino » Qua Mar 21, 2012 12:10

renanrdaros escreveu:Eu já havia comparado o meu resultado com o resultado obtido pelo wolfram alpha. A integração está correta, o problema é que, ao aplicar os limites, não chego ao resultado esperado.


Qual o valor que você está chegando?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Integração por partes] Não consigo chegar no resultado.

Mensagempor renanrdaros » Qua Mar 21, 2012 13:10

\int_{0}^{60} v(t) dt =  382500ln(\frac{255}{375}) + 162360 = 14884.1


Refiz os cálculos e consegui chegar ao resultado correto!
Obrigado pela ajuda!
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D