• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trignometria] Fórmula Fundamental da Trignometria

[Trignometria] Fórmula Fundamental da Trignometria

Mensagempor rola09 » Dom Mar 18, 2012 15:12

Resolvi este exercício e queria perguntar e partilhar se estou errado em alguma parte das questões.

Considere a seguinte expressão:

B\left(\alpha \right)=-sen\left(5\pi-\alpha \right)+tg\alpha-2cos\left(\frac{5}{2}\pi-\alpha \right)+\frac{cos\left(\frac{5}{2}\pi-\alpha \right)}{sen\left(\frac{3}{2}\pi+\alpha \right)}

1 - Mostre que B\left(\alpha \right)=-3sen\left(\alpha \right).

B\left(\alpha \right)=-sen\left(5\pi-\alpha \right)+tg\left(\alpha \right)-2cos\left(\frac{5}{2}\pi-\alpha \right)+\frac{cos\left(\frac{5}{2}\pi-\alpha \right)}{sen\left(\frac{3}{2}\pi+\alpha \right)}\Leftrightarrow B\left(\alpha \right)=-sen\left(\pi-\alpha \right)+tg\left(\alpha \right)-2cos\left(\frac{\pi}{2}-\alpha \right)+\frac{cos\left(\frac{\pi}{2}-\alpha \right)}{sen\left(\frac{3\pi}{2}+\alpha \right)}\Leftrightarrow B\left(\alpha \right)=-sen\left(\alpha \right)+tg\left(\alpha \right)-2sen\left(\alpha \right)-\frac{sen\alpha}{cos\alpha}\Leftrightarrow B\left(\alpha \right)=-sen\left(\alpha \right)+tg\left(\alpha \right)-2sen\left(\alpha \right)-tg\left(\alpha \right)\Leftrightarrow B\left(\alpha \right)=-3sen\left(\alpha \right)


2 - Sabendo que tg\left(\alpha \right)=-2 e \alpha \in \left]-\frac{\pi}{2};\frac{\pi}{2} \right[ calcule o valor exato da expressão B\left(\alpha \right).

Aplicando a fórmula {tg}^{2}\alpha+1=\frac{1}{{cos}^{2}\alpha}

{\left(-2 \right)}^{2}+1=\frac{1}{{cos}^{2}\alpha}\Leftrightarrow cos\alpha=\pm\frac{\sqrt{5}}{5}. Como \alpha\in\left]-\frac{\pi}{2},\frac{\pi}{2} \right[ sabemos que cos\alpha=\frac{\sqrt{5}}{5}. Então, como tg\alpha=\frac{sen\alpha}{cos\alpha} concluímos que

-2=\frac{sen\alpha}{\frac{\sqrt{5}}{5}}\Leftrightarrow sen\alpha=-\frac{2\sqrt{5}}{5}

Neste caso B\left(\alpha \right)=-3*\left(-\frac{2\sqrt{5}}{5} \right)\Leftrightarrow B\left(\alpha \right)=\frac{6\sqrt{5}}{5}


3 - Resolva em , a condição B\left(\alpha \right)=3cos\left(-\alpha \right).

B\left(\alpha \right)=3cos\left(-\alpha \right)\Leftrightarrow -3sen\alpha=3cos\alpha\Leftrightarrow sen\alpha=-cos\alpha\Leftrightarrow \alpha=

-\frac{\pi}{4}+\kappa\pi\kappa \in Z
rola09
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Mar 12, 2012 15:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cientifico-Natural
Andamento: cursando

Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?