por cjunior94 » Dom Mar 18, 2012 11:49
Sempre imaginei que uma função, por exemplo:
f(x) = 2x²-8x+8
pudesse ser simplificada para:
f(x) = x²-4x+4
contudo, hoje ao desenvolver alguns exercícios de limite, percebi que ocorre uma pequena alteração no gráfico de uma função polinomial caso eu simplifique-a dessa forma.
Gostaria de saber se essa simplificação é correta ou não? e se caso não seja, qual seria a forma correta?
-
cjunior94
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Mar 18, 2012 11:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fraol » Dom Mar 18, 2012 12:25
Quando você está simplicifando igualdades ou desigualdades envolvendo expressões polinomiais você pode simplificar, desde que a mesma operação ( por exemplo dividir por 2 ) seja aplicável aos dois membros da igualdade ou desigualdade.
Quando se trata da expressão definidora da função você não pode simplificar pois você estaria mudando a expressão definidora e portanto, modificaria a função propriamente dita.
No caso específico da função que você exibiu, função quadrática, você estaria mudando características dela como a concavidade, o ponto que ela intersecta o eixo y, etc.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por cjunior94 » Dom Mar 18, 2012 12:37
Muito obrigado pela explicação!
-
cjunior94
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Mar 18, 2012 11:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Polinomio de taylor - Dúvida sobre o erro.
por natanaelskt » Seg Jun 23, 2014 18:55
- 0 Respostas
- 1675 Exibições
- Última mensagem por natanaelskt

Seg Jun 23, 2014 18:55
Cálculo: Limites, Derivadas e Integrais
-
- [polinômio de taylor] - Dúvida sobre o exercício
por natanaelskt » Ter Jul 08, 2014 11:41
- 0 Respostas
- 1732 Exibições
- Última mensagem por natanaelskt

Ter Jul 08, 2014 11:41
Cálculo: Limites, Derivadas e Integrais
-
- Simplificação de polinômio
por liswan » Qui Abr 17, 2014 19:54
- 1 Respostas
- 1493 Exibições
- Última mensagem por e8group

Qui Abr 17, 2014 23:35
Polinômios
-
- Dúvida em Polinômio
por Cleyson007 » Qua Mai 27, 2009 15:15
- 4 Respostas
- 3209 Exibições
- Última mensagem por fernandocastro

Qui Out 11, 2012 21:54
Polinômios
-
- Duvida em simplificacao
por bmachado » Seg Abr 30, 2012 17:21
- 2 Respostas
- 1419 Exibições
- Última mensagem por bmachado

Ter Mai 01, 2012 15:31
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.