• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Adilson

Adilson

Mensagempor Adilson » Sáb Jun 13, 2009 00:44

Adilson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 06, 2009 00:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Adilson

Mensagempor Molina » Sáb Jun 13, 2009 21:55

Adilson escreveu:


Bem vindo ao forum, Adilson!

Você nao precisa na frase toda usar o Editor de Fórmular, basta usar nas expressões matemáticas, ok?

Sobre sua dúvida acho que o modo mais fácil é usando logaritmo.

Aplicando log em ambos os lados de 10^{2x}=25 ficamos com:

log10^{2x}=log25
2x*log10=log5^2 (propriedade do expoente de log/fatoração de 25)
2x*1=2log5 (propriedade de logaritmando e base iguais)
2x=2log5
x=log5

Descobrimos o valor de x, agora substituimos em 10^{-x}:

10^{(-log5)}=0,2

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Adilson

Mensagempor Adilson » Dom Jun 14, 2009 10:54

Puxa...Valeu pela ajuda, eu não sabia por onde começar..
E me desculpe, ainda estou aprendendo a utilizar o editor


Brigadão
Adilson
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 06, 2009 00:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.