• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão, número irracional.

Questão, número irracional.

Mensagempor LuizCarlos » Sex Mar 16, 2012 18:49

Olá amigos!

Seguinte, estou fazendo exercícios, não estou entendendo essa questão:

Escreva a representação decimal de um número irracional compreendido entre 5 e 6 e de outro compreendido entre 3,1 e 3,2.

Como faço para encontrar números compreendidos entre dois números inteiros, e dois números decimais, no caso 3,1 e 3,2.

Abraço.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Questão, número irracional.

Mensagempor MarceloFantini » Sex Mar 16, 2012 22:27

Primeiro, é bom perceber que não existe representação decimal finita de um número irracional, apenas as aproximações por racionais que tem, uma vez que pela definição sabemos que um número racional é a divisão por dois números inteiros. Para esclarecer esse exercício, pense num número cuja raíz quadrada por exemplo esteja entre 5 e 6. Ou seja, 5 < \text{numero} < 6. Isto significa que, elevado ao quadrado, teremos \text{numero}^2 > 25 e \text{numero}^2 < 36 pois respeita a desigualdade. Daí, basta escolher algum que te interesse. Por exemplo, \text{numero}^2 = 30 \implies \text{numero} = \sqrt{30}.

Para facilitar o entendimento, usei "número", mas formalmente escreva alguma letra para denotar álgebra. Perdão pela falta de acento, não tem como no LaTeX.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.