• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo limites

Calculo limites

Mensagempor cal12 » Qui Mar 15, 2012 19:22

limite esta dando outra indeterminação o que eu tenho que fazer agora e porque essa indeterminação ?

\lim_{x\rightarrow1}\frac{\sqrt[2]{x+3}-2}{x-1}
cal12
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Ago 14, 2011 11:21
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: Calculo limites

Mensagempor fraol » Qui Mar 15, 2012 21:39

Você já viu a Regra de L´Hopital?
Você pode aplicá-la nesses casos de indeterminação, inclusive mais de uma vez ( desde que as funções sejam repetidamente deriváveis ).

A indeterminação é porque se você aplicar o limite diretamente irá obter \frac{0}{0}.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Calculo limites

Mensagempor Claudin » Qui Mar 15, 2012 21:51

Tenta multiplicar pelo conjugado do numerador.
Caso não consiga obter o resultado correto, volte no tópico.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Calculo limites

Mensagempor Claudin » Qui Mar 15, 2012 22:00

Caso não conheça L'Hopital
Vá pelo caminho que eu falei.

Outro caminho que esqueci de citar seria de substituição de variáveis, por exemplo:

\sqrt[2]{x+3}\Leftrightarrow y

Também resultará no resultado correto que é de \frac{1}{4}

Qualquer dúvida é só voltar. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}