• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Inversa

Função Inversa

Mensagempor Rafael16 » Qua Mar 14, 2012 12:08

Olá pessoal, estou com dúvida em resolver a função inversa

f: {\Re}^{*} \rightarrow \Re - {2} definida por f(x) = \frac{2x - 4}{x}

Tentei resolver da seguinte forma:

f(x) = \frac{2x - 4}{x}

x = \frac{2y - 4}{y}

2y - 4 = xy

2y = xy + 4

\frac{2y}{y} = x + 4

{f}^{-1}(x) = x + 4

Resposta correta: {f}^{-1}(x) = \frac{-4}{x - 2}

Gostaria que me mostrasse como resolver isso.
Valeu! :-D
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Função Inversa

Mensagempor LuizAquino » Qua Mar 14, 2012 14:53

Rafael16 escreveu:Olá pessoal, estou com dúvida em resolver a função inversa

f: {\Re}^{*} \rightarrow \Re - {2} definida por f(x) = \frac{2x - 4}{x}


Rafael16 escreveu:Tentei resolver da seguinte forma:

f(x) = \frac{2x - 4}{x}

x = \frac{2y - 4}{y}

2y - 4 = xy

2y = xy + 4


Até aqui ok.

Rafael16 escreveu:\frac{2y}{y} = x + 4


Aqui está o seu erro.

O correto seria:

2y = xy + 4

2y - xy =  4

y(2 - x) =  4

y =  \dfrac{4}{2 - x}

Essa resposta está correta. Mas podemos arrumar para ficar como a resposta do gabarito.

Multiplicando o numerador e o denominador por (-1), temos que:

y =  \dfrac{4\cdot(-1)}{(2 - x)\cdot (-1)}

y =  \dfrac{-4}{-2 + x}

y =  \dfrac{-4}{x - 2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função Inversa

Mensagempor Rafael16 » Qua Mar 14, 2012 15:03

Muito obrigado LuizAquino, mas fiquei com uma dúvida:

y = \frac{4}{2 - x}

é igual a

y = \frac{-4}{x - 2} ?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Função Inversa

Mensagempor LuizAquino » Qua Mar 14, 2012 15:16

Rafael16 escreveu:Muito obrigado LuizAquino, mas fiquei com uma dúvida:

y = \frac{4}{2 - x}

é igual a

y = \frac{-4}{x - 2} ?


Sim, são iguais.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.