por Rodrigo Ferreira » Dom Mar 11, 2012 20:44

[tex]\frac{2}{3}(x-\frac{3}{4})-\frac{3}{5}(\frac{x}{2}-\frac{5}{2})=1-x
Aguem poderia me ajudar? obrigado
-
Rodrigo Ferreira
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mar 11, 2012 20:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias contábeis
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dificuldade em Álgebra
por Cleyson007 » Qua Mar 07, 2012 17:27
- 3 Respostas
- 1115 Exibições
- Última mensagem por MarceloFantini

Qua Mar 07, 2012 21:05
Álgebra Elementar
-
- Dificuldade
por Alison Bissoli » Qui Dez 03, 2009 13:40
- 6 Respostas
- 3639 Exibições
- Última mensagem por Elcioschin

Dom Dez 06, 2009 13:54
Estatística
-
- Dificuldade
por Mauricio pelinson » Qui Fev 02, 2012 19:22
- 0 Respostas
- 4281 Exibições
- Última mensagem por Mauricio pelinson

Qui Fev 02, 2012 19:22
Sequências
-
- Dificuldade
por Jhennyfer » Ter Jun 18, 2013 17:04
- 5 Respostas
- 5544 Exibições
- Última mensagem por jeniffer05

Dom Mai 11, 2014 15:32
Teoria dos Números
-
- Dificuldade resolução
por Alvadorn » Sáb Fev 20, 2010 12:55
- 2 Respostas
- 1861 Exibições
- Última mensagem por Alvadorn

Dom Fev 21, 2010 16:32
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.