• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria

Trigonometria

Mensagempor Anderson Alves » Sex Mar 09, 2012 23:40

Olá pessoal.

Tenho dúvida nesta questão:

Um retângulo com lados adjacentes medindo Sen a e Cos b, com 0 < a ?/2, tem Perímetro igual a ?6. Qula a área do retângulo?

bom; O perímetro é a soma de todos os lados do retângulo
A área é a fórmula base x altura.

Pois não consegui chegar a um resultado conforme marcada pela questão: 1/4


Ficarei grato pela ajuda
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Trigonometria

Mensagempor fraol » Sáb Mar 10, 2012 10:19

Fiz uma figura pra gente analisar:
figura.png
retangulo
figura.png (6.6 KiB) Exibido 2802 vezes


Sendo os lados adjacentes, tanto faz tomarmos x = sena a e y = cos b ou inverso, o que estaríamos fazendo é trocar a referência do ângulo \alpha para o ângulo \beta, veja a figura.

O que vale ressaltar é que, como os lados são adjacentes,
então sendo um o sen a e o outro o cos b,
teremos que o ângulo a é igual ao ângulo b . Isto é:

\hat a = \hat b daí decorre que o perímetro é igual a

sena + cos b + sen a + cos b = sena + cos a + sen a + cos a = 2 (sen a + cos b) = \sqrt{6}, ou seja:

sen a + cos a  = \frac{\sqrt{6}}{2}, elevemos ao quadrado ambos os membros dessa igualdade:

\left ( sen a + cos a \right)^2 = \left( \frac{\sqrt{6}}{2} \right)^2, que desenvolvendo dá:

sen^2 a + cos^2 a + 2 sen a cos a = \frac{6}{4} \iff 1 + 2 sen a cos a = \frac{6}{4}

\iff 2 sen a cos a = \frac{6}{4} - 1 = \frac{2}{4} . Então

sen a cos a = \frac{1}{4} que é a área pedida ( sen a cos b ).

É isso.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Trigonometria

Mensagempor Anderson Alves » Sáb Mar 10, 2012 13:33

Valeu!!!
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.