por alfabeta » Qua Mar 07, 2012 20:39
(UEPG PR-2011) Três polígonos regulares A, B, e C, tem números de lados, respectivamente, a, b, c, onde a > b > c. Sabendo-se que a, b e c estão em progressão aritmética de razão –2 e que a soma de todos os ângulos internos dos três polígonos é 3.240°, assinale o que for correto
01. O polígono A tem 35 diagonais.
02. O número de diagonais do polígono C é maior que 10.
04. A soma dos ângulos internos do polígono C é 720°.
08. Cada ângulo externo do polígono A mede 36°.
16. Cada ângulo interno do polígono B mede 135°.
Tentativa: Como estão em PA, disse que:
a= x+2
b=x
c=x-2
A soma de todos os lados é 3240, portanto:
usando a fórmula das soma dos ângulos internos Sn= (n-2).180
(a-2).180 + (b-2)180 + (c-2).180 = 3240
resolvendo: a + b + c= 12
Substituindo, temos que x+2 +x +x-2 = 12
x=4
O que estou errando?
-
alfabeta
- Usuário Dedicado

-
- Mensagens: 40
- Registrado em: Ter Fev 28, 2012 11:37
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Qua Mar 07, 2012 23:49
Veja que

e não 12. Daí,

. Analise as afirmações.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Polígonos] questão sobre polígonos
por -daniel15asv » Qui Ago 02, 2012 20:11
- 2 Respostas
- 2178 Exibições
- Última mensagem por -daniel15asv

Sex Ago 03, 2012 00:24
Geometria Plana
-
- Poligonos
por cristina » Qui Abr 15, 2010 19:37
- 1 Respostas
- 3255 Exibições
- Última mensagem por Elcioschin

Qui Abr 15, 2010 20:25
Geometria Plana
-
- Polígonos
por Diana » Seg Mai 23, 2011 22:10
- 4 Respostas
- 2578 Exibições
- Última mensagem por Diana

Seg Mai 23, 2011 23:19
Geometria Plana
-
- Poligonos
por Jean Cigari » Qui Jun 30, 2011 13:50
- 1 Respostas
- 3812 Exibições
- Última mensagem por FilipeCaceres

Qui Jun 30, 2011 20:29
Geometria Plana
-
- Polígonos não-convexos
por maria cleide » Sáb Set 24, 2011 23:03
- 1 Respostas
- 1822 Exibições
- Última mensagem por maria cleide

Qui Set 29, 2011 21:03
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.