• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Expressão Trigonométrica

Expressão Trigonométrica

Mensagempor Anderson Alves » Dom Mar 04, 2012 22:21

Olá Galerinha.

Tenho dúvida nesta questão:
Se a + b = 180º, então a expressão 1 - sen a * sen b vale:
Resp.: Cos² a

Eu responderia 0; pois se a+b é igual a 180º, então a é igual 90º e b é igual a 90º;
90 + 90 = 180; então 1 - sen 90º * sen 90º seria igual a 0;
mas marca como resposta Cos² a.

Ficarei grato pela ajuda que tiver de alguém.
Obrigado pela atenção.
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado

Re: Expressão Trigonométrica

Mensagempor TheoFerraz » Dom Mar 04, 2012 23:05

a sua resposta partiu do pressuposto que a e b são iguais... a equação a + b = 180 se resolve para a = 90 e b = 90, sim sim, mas também se resolve pra a = 1 e b = 179 não é? entre varias outras resoluções a e b não precisam ser iguais


se a + b = 180 temos que:

sen( a+b) = 0

dai,

sen(a)cos(b) + sen(b)cos(a) = 0

sen(a)cos(b) = - sen(b)cos(a)

rapidamente, isso nos leva a ver que:

tg(a) = - tg(b)

isso nos mostra que a e b são praticamente o mesmo angulo, o problema é que um deles é do primeiro quadrante e o outro é do segundo! mas o angulo que eles formam com o eixo X é o mesmo! pense no círculo trigonométrico, voce vai perceber...

outro jeito de ver isso é que, se a + b = \pi então a = pi - b isso é justamente a equaçãozinha que a gente usa pra "transpor" um angulo do primeiro pro segundo quadrante! ficou claro?

caso tenha ficado, pense que, como são o mesmo angulo em quadrantes diferentes (específicamente 1 e 2):

sen(a) = sen(b)

e

cos(a) = - cos(b)

dai,

sen(a)sen(b) = {sen}^{2}(a) = {sen}^{2}(b)

e

cos(a)cos(b) = {cos}^{2}(a) = {cos}^{2}(b)
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Expressão Trigonométrica

Mensagempor Anderson Alves » Dom Mar 04, 2012 23:27

Obrigado!!!
Anderson Alves
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Sex Fev 24, 2012 22:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Informática
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}