• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Subespaço Vetorial] Polinômio

[Subespaço Vetorial] Polinômio

Mensagempor leandro_aur » Dom Mar 04, 2012 16:41

Galera, tenho uma dúvida aqui em um exercício que surgiu. A questão pede o seguinte:

Verifique se em cada um dos itens abaixo o subconjunto W é um subespaço vetorial do espaço vetorial V. Caso não sejam especificadas, as operações são as usuais.

Então galera, o ítem que não consegui provar é o seguinte:

V= {P}_{n}(R), W={p\in {P}_{n}(R) ; p(0)=p(1)}

Se fosse p(0)=0 eu poderia usar as demonstrações usuais, só que assim eu já não sei... Alguém pode dar uma ajuda? Valeu
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: [Subespaço Vetorial] Polinômio

Mensagempor MarceloFantini » Dom Mar 04, 2012 17:04

Para provar que isto é subespaço basta mostrar que qualquer combinação linear de polinômios avaliados em zero terão a mesma avaliação quando avaliados em um. Veja:

(cf +g)(0) = (cf)(0) + g(0) = c(f(0)) + g(0) =

= c(f(1)) + g(1) = (cf)(1) + g(1) = (cf+g)(1).

Daí é subespaço. Veja que da segunda para a terceira igualdades eu apenas usei que se f e g pertencem ao espaço, sua avalição em zero é igual sua avalição em um.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Subespaço Vetorial] Polinômio

Mensagempor leandro_aur » Dom Mar 04, 2012 17:09

Entendi, então só fazer a demonstração comum e provar que se p(0)=p(1) portanto as demonstrações de existencia de subespaço para 0 são as mesmas que para 1.

Obrigado.
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: [Subespaço Vetorial] Polinômio

Mensagempor MarceloFantini » Dom Mar 04, 2012 19:50

Não entendi a sua colocação. O que provamos foi que, se V = P_n(\mathbb{R}) então W = \{ p \in P_n(\mathbb{R}):  p(0) = p(1) \} é subespaço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Subespaço Vetorial] Polinômio

Mensagempor leandro_aur » Dom Mar 04, 2012 20:00

Isso que eu quis dizer, não me expressei bem, my mistake...
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.