• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cicunferencia

cicunferencia

Mensagempor alfabeta » Qua Fev 29, 2012 23:52

questao 3.jpg
Na figura a seguir ABCD é um quadrado e TDCQ um trapézio isósceles inscrito em uma circunferência (l) de raio igual a
raiz de5 / 2 cm. Os segmentos de reta AT e BQ são tangentes à circunferência (l) em T e Q. Sabendo-se que AT e BQ têm
comprimento igual ao dobro do lado do quadrado ABCD, determine a medida do segmento de reta AB.

resposta: raiz de 2 sobre2.

tentativa:eu traçei uma reta de A até o centro da circunferencia. Desta forma, eu disse que formou-se o triangulo isosceles ATO, sendo AT = AO = 2L. Daí aplique a propriedade de propriedade de potencia de ponto com a reta tangente AT e a secante AE (reta que sai de A passa pelo centro e vai até o ponto E que criei na circunferencia). Desta forma:

AT ao quadrado= ( 2L - R)(2L +R) Mas esta conta não dá certo

Por favor, me ajude a resolver.

Se puder , me explica também como coloco as contas direitinho, como quadrado, raiz e frações.

Agradeço antecipadamente.
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: cicunferencia

Mensagempor LuizAquino » Qui Mar 01, 2012 16:09

alfabeta escreveu:Na figura a seguir ABCD é um quadrado e TDCQ um trapézio isósceles inscrito em uma circunferência (l) de raio igual a
raiz de5 / 2 cm. Os segmentos de reta AT e BQ são tangentes à circunferência (l) em T e Q. Sabendo-se que AT e BQ têm
comprimento igual ao dobro do lado do quadrado ABCD, determine a medida do segmento de reta AB.

questao 3.jpg
questao 3.jpg (9.41 KiB) Exibido 1182 vezes



alfabeta escreveu:tentativa:eu traçei uma reta de A até o centro da circunferencia. Desta forma, eu disse que formou-se o triangulo isosceles ATO, sendo AT = AO = 2L. Daí aplique a propriedade de propriedade de potencia de ponto com a reta tangente AT e a secante AE (reta que sai de A passa pelo centro e vai até o ponto E que criei na circunferencia). Desta forma:

AT ao quadrado= ( 2L - R)(2L +R) Mas esta conta não dá certo


O triângulo ATO não é isósceles. Vide a figura abaixo.

figura1.png
figura1.png (6.13 KiB) Exibido 1182 vezes


Ao invés da construção que você tentou, considere a construção ilustrada na figura abaixo.

figura2.png
figura2.png (6.39 KiB) Exibido 1182 vezes


Usando que DEF é um triângulo retângulo e a relação de potência entre segmento tangente e segmento secante na circunferência, temos o seguinte sistema:

\begin{cases}
x(x + y) = (2x)^2 \\
y^2 + x^2 = \left(\sqrt{5}\right)^2
\end{cases}

Agora basta resolver esse sistema para determinar o valor de x.

alfabeta escreveu:Se puder , me explica também como coloco as contas direitinho, como quadrado, raiz e frações.


Por favor, vide o tópico:

DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: cicunferencia

Mensagempor alfabeta » Qui Mar 01, 2012 17:56

Muito obrigada!
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.