• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação da circunferência

Equação da circunferência

Mensagempor Andreza » Sáb Fev 25, 2012 09:43

Qual é a equação da circunferência que circunscreve o triângulo equilátero ABC, cujo lado mede 4\sqrt[]{3} unidades, sabendo que o eixo y contém a altura relativa ao lado AB?

Eu consegui achar a altura q deu 6 unidades mas não consigo relacionar ela com a fórmula.


Desde já agradeço qualquer ajuda ou dica.
Andreza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Sáb Out 22, 2011 11:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenc. Plena Matemática
Andamento: formado

Re: Equação da circunferência

Mensagempor Guill » Sáb Fev 25, 2012 11:43

Imaginando uma circunferência que circunscreve um triângulo equilátero de lado 4.\sqrt[]{3}, veremos que essa circunferência toca cada lado do triângulo, portanto esses lados são tângentes da circunferência.

A altura dessa triângulo é a bissetriz e a mediana, além de passarem pelo centro da circunferência:

h^2 + (2\sqrt[]{3})^2 = (4\sqrt[]{3})^2

h^2 + 12 = 48

h = 6


Sabendo a altura, e sabendo que ela faz parte do eixo y, sabemos que o centro da circunferência também está no eixo y. Agora, se traçarmos, a partir do centro dessa circunferênca, um segmento até o vértice e outro até o lado tangente, teremos um triângulo retângulo, onde o ângulo oposto ao raio é de 30º. Dessa forma, descobrimos que o segmento do centro ao vértice é 2 vezes maior que o segmento do centro à tangente. Como a soma desses comprimentos me dá a altura do triângulo:

r + 2r = 6

r = 2



O problema é que não existem informações acerca da posição do triângulo no eixo y. Dessa forma, não podemos saber onde a altura começa ou termina. Mas sabemos que a equação é do tipo:

x^2 + (y + n)^2 = 4
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: