• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor rareirin » Qua Fev 22, 2012 17:07

Aparenta ser um exercício simples, queria uma explicação bem detalhada se possível. Obrigado


\lim_{x\rightarrow1}\frac{3x^2+3x-6}{x^2+2x-3^}
rareirin
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 22, 2012 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limite

Mensagempor joaofonseca » Qua Fev 22, 2012 17:28

Antes de dar algumas pistas para a resolução deste problema.Não resisto a perguntar.

rareirin estás mesmo a frequentar o curso de engenharia civil, conforme consta no teu perfil???

Se substituir-mos x por 1 chegamos a uma indeterminação do tipo 0/0.Portanto temos de decompor denominador e numerador para eleminar o fator comum.
No numerador, deves primeiro colocar em evidência o 3, de forma a evitar o coeficiênte de x^2 maior que 1.Depois é decompor seja o numerador, seja o denominador, mantendo sempre o 3 em evidência.
O monomio [tex]x-1[/text] será o fator comum, e assim pode ser eliminado tanto do denominador como do numerador.
A partir daqui basta substituir x por 1, não esquecendo de multiplicar por 3.No fim basta simplificar a fração.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Limite

Mensagempor rareirin » Qui Fev 23, 2012 10:17

Na verdade hoje é o primeiro dia de aula. KKK
Quero entrar sabendo alguma coisa, costume meu =)
-----------------------------------------------------------------
Nossa não conseguir entender nada *-)
Acho melhor eu ir nas aulas para depois tirar minha dúvidas :-D
rareirin
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 22, 2012 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Fev 23, 2012 13:10

rareirin escreveu:Na verdade hoje é o primeiro dia de aula. KKK
Quero entrar sabendo alguma coisa, costume meu =)
-----------------------------------------------------------------
Nossa não conseguir entender nada *-)
Acho melhor eu ir nas aulas para depois tirar minha dúvidas :-D


Eu gostaria de recomendar que você assista a videoaula "01. Cálculo I - Noção Intuitiva de Limite". Ela está disponível em meu canal no YouTube:

http://www.youytube.com/LCMAquino

Após assistir a videoaula, tente resolver esse exercício.

Dica

Para resolver o limite que você deseja, primeiro você precisa fatorar os polinômios que aparecem na fração. Em seguida, basta efetuar uma simplificação.

Vale lembrar que uma expressão polinomial do 2º grau dada por ax^2 + bx + c pode ser escrita na sua forma fatorada como sendo a(x - x_1)(x - x_2) , onde x_1 e x_2 são as raízes da equação ax^2 + bx + c = 0 . Em outras palavras, temos que: ax^2 + bx + c = a(x - x_1)(x - x_2) .

Exemplo

Considere a expressão polinomial do 2º grau dada por 5x^2 - 20x + 15 .

Calculando as raízes da equação 5x^2 - 20x + 15 = 0 , obtemos x_1 = 1 e x_2 = 3 . Portanto, a forma fatorada desse polinômio é:

5x^2 - 20x + 15 = 5(x-1)(x-3)

Confira essa relação. Aplique a distributiva para desenvolver 5(x-1)(x-3) e verificar que o resultado será 5x^2 - 20x + 15 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?