• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Espacial

Geometria Espacial

Mensagempor Rosana Vieira » Ter Fev 21, 2012 10:31

Bom dia Marcelo estou com dúvida para resolver este exercício.
Um poliedro possui uma face pentagonal e 15 faces triangulares. Determine o número de arestas e o número de vértices desse poliedro. (Use a relação de Euler)
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor Rosana Vieira » Ter Fev 21, 2012 10:33

Bom dia Marcelo e chegei nesta resolução

F = 15 + 1 A = 15 x 3 + 1 x 5 /2 Relação de Euler
F = 16 A = 45 + 5 /2 V – A + F = 2
A = 50/ 2 V – 25 + 16 = 2
A = 25 V – 9 = 2
V = 2 + 9
V = 11
Portanto a faces é 16, a arestas é 25 e o vértices é 11
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.