• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dominio de validade!

Dominio de validade!

Mensagempor Victor_tnk » Sáb Fev 18, 2012 15:20

A função real f(x) = \frac{2x}{\sqrt[2]{x^2-2x+1}+{\sqrt[2]{x^2+2x+1}}} tem domínio de validade igual a:

a) R
b) R, exceto {1}
c) R, exceto{-1}
d)R, exceto{-1,1}
e)R+

bom pelas minhas contas percebi que há dois trinômios quadrados perfeitos: \frac{2x}{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)^2}}
Usei a condição de existência :
{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)^2}} \neq 0
e em seguida os deixei na forma de módulo :
\left|x+1 \right| + \left|x-1 \right| \neq 0

Meu resultado deu : x\neq 0 o que não bateu com nenhuma das respostas..
Alguém poderia me ajudar? esta questão me deu uma boa dor de cabeça e mesmo assim não consegui resolver.
Gostaria de saber o que eu fiz de errado, desde já agradeço muito.
Victor_tnk
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 18, 2012 14:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dominio de validade!

Mensagempor LuizAquino » Sáb Fev 18, 2012 17:48

Victor_tnk escreveu:A função real f(x) = \frac{2x}{\sqrt[2]{x^2-2x+1}+{\sqrt[2]{x^2+2x+1}}} tem domínio de validade igual a:

a) R
b) R, exceto {1}
c) R, exceto{-1}
d)R, exceto{-1,1}
e)R+


Victor_tnk escreveu:bom pelas minhas contas percebi que há dois trinômios quadrados perfeitos: \frac{2x}{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)^2}}


Ok.

Victor_tnk escreveu:Usei a condição de existência :
{\sqrt[2]{(x+1)^2}+\sqrt[2]{(x-1)^2}} \neq 0
e em seguida os deixei na forma de módulo :
\left|x+1 \right| + \left|x-1 \right| \neq 0


Na verdade, como temos a presença de raízes quadradas, as expressões que aparecem dentro delas não podem ser negativas. Ou seja, devemos ter as condições:

(i) (x+1)^2 \geq 0

(ii) (x-1)^2 \geq 0

Por outro lado, não pode haver uma expressão nula no denominador. Então precisamos também da condição:

(iii) \sqrt{(x+1)^2}+\sqrt{(x-1)^2} \neq 0

Note que os números \sqrt{(x+1)^2} e \sqrt{(x-1)^2} são sempre positivos. Portanto, para que sua soma seja igual a zero, seria necessário que esses dois números fossem zero. Entretanto, não há número real x que faça com que os números \sqrt{(x+1)^2} e \sqrt{(x-1)^2} sejam ambos iguais a zero. Conclusão: não importa o valor do número real x, sempre teremos a condição (iii) atendida.

Dessa forma, precisamos nos preocupar apenas com as condições (i) e (ii).

Agora tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dominio de validade!

Mensagempor Victor_tnk » Dom Fev 19, 2012 03:55

Muito obrigado mesmo! Ajuda surreal!
Consegui solucionar deste modo..

Mas agora me surgiu uma dúvida:
\sqrt[2]{(x+1)^2} + \sqrt[2]{(x-1)^2}
Eu não poderia simplesmente cortar o indice com o expoente? ficando:
(x+1)+(x-1)=2x (denominador)
assim ficaria f(x)= \frac{2x}{2x}, sendo o domínio podendo assumir qualquer numero real menos 0..
Entretanto deste modo não bate com o gabarito, gostaria de saber qual é o erro nessa jogada..
Muito obrigado!
Victor_tnk
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Fev 18, 2012 14:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dominio de validade!

Mensagempor LuizAquino » Dom Fev 19, 2012 07:47

Victor_tnk escreveu:Mas agora me surgiu uma dúvida:
\sqrt[2]{(x+1)^2} + \sqrt[2]{(x-1)^2}
Eu não poderia simplesmente cortar o indice com o expoente? ficando:
(x+1)+(x-1)=2x (denominador)
assim ficaria f(x)= \frac{2x}{2x}, sendo o domínio podendo assumir qualquer numero real menos 0..


Você não pode fazer isso. Lembre-se que: \sqrt{a^2} = |a| .

Desse modo, simplificando o expoente com o índice, ficaríamos com:

f(x) = \frac{2x}{|x+1| + |x-1|}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?